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ADVANCES IN RADAR SYSTEMS FOR MODERN 
CIVILIAN AND COMMERCIAL APPLICATIONS: PART 2

Automotive radar is the most promising and fastest-growing 
civilian application of radar technology. Vehicular radars 
provide the key enabling technology for the autonomous 

driving revolution that will have a dramatic impact on everyone’s 
day-to-day lives. They play a central role in the autonomous 
sensing suit because of the significant progress in the radio-fre-
quency (RF) CMOS technology that enables high-level radar-
on-chip integration and thus reduces the automotive radar cost to 
the level of consumer mass production. However, this would not 
be sufficient without high spatial resolution performance, which 
can be obtained by multiple-input, multiple-output (MIMO) and 
cognitive approaches at a lower cost. 

The uniqueness of automotive radar scenarios mandates the 
formulation and derivation of new signal processing approach-
es beyond classical military radar concepts. The reformulation 
of vehicular radar tasks, along with new performance require-
ments, provides an opportunity to develop innovative signal 
processing methods. In this article, we first revise conventional 
techniques for signal processing in automotive radar. Then, we 
emphasize the limitations of the historically driven conven-
tional processing approaches in practical roadway scenarios 
and present alternative signal processing solutions. Finally, we 
propose several future research directions to enhance vehicu-
lar radar performance.

Introduction
Autonomous driving is one of the megatrends in the automotive 
industry, and a majority of car manufacturers are already intro-
ducing various levels of autonomy into commercially available 
vehicles. Autonomous conveyances need to substitute for a hu-
man driver in both sensing and decision making. The main task 
of the sensing suite in autonomous vehicles is to provide the 
most reliable and dense information on the vehicular surround-
ings. Specifically, it is necessary to acquire information on driv-
able areas on the road and to report all objects above the road 
level as obstacles to be avoided. Thus, the sensors need to detect, 
localize, and classify a variety of typical objects, such as vehi-
cles, pedestrians, poles, and guardrails. Since the major benefits 
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of autonomous vehicles are expected in urban environments, 
the variety of obstacles’ appearance and the short response time 
required pose the major challenges to the sensing suite. Com-
prehensive and accurate information on vehicle surroundings 
cannot be achieved by any single practical sensor. Therefore, all 
autonomous vehicles are typically equipped with multiple sen-
sors of multiple modalities: radars, cameras, and lidars.

Because cameras resemble human driver vision, they can be 
the most natural sensors for autonomous driving. They are low 
in cost and have a small form factor, providing dense and rich 
information on the environment, along with the color and tex-
ture of objects. However, cameras have significant shortcom-
ings: they are sensitive to illumination and weather conditions, 
have to be mounted behind an optically transparent surface, 
and do not provide direct range and velocity measurements. On 
the contrary, radars are robust to adverse weather conditions, 
are insensitive to lighting variations, provide long and accurate 
range measurements, and can be packaged behind optically 
nontransparent fascia.

The first attempts at automotive radar applications were 
reported a few decades ago [1]–[3]. However, the mass deploy-
ment of radars in commercial vehicles began only recently. 
The autonomous driving megatrend is the major factor in 
automotive radar mass production. The technological progress 
of the 77-GHz RF CMOS with integrated digital CMOS and 
further packaging advances enable low-cost radar-on-chip and 
antenna-on-chip systems. The continuously shrinking vehicu-
lar radar form factor enables novel on-platform integration 
possibilities and, consequently, new applications [4].

Historically, automotive radars were classified into long-
range radars (LRRs), short-range radars (SRRs), and side-blind 
zone radars (SBZAs) [5]. This was driven by a variety of appli-
cations and performance requirements, such as operation range, 
field of view (FOV), and object of interest. Thus, LRR is mainly 
used for adaptive cruise control and, therefore, is required to 
detect, localize, track, and classify vehicles at longer ranges, with 
a narrow FOV. SRR needs to provide information on a vehicle’s 
surroundings at ranges of up to 100 m, with an FOV of more than 

°,120  where the reference target can be any object above the road 
level. The simplest automotive radar, SBZA, is required to detect 
only objects within the lanes adjacent to the host vehicle.

The reduced radar size and advanced capabilities have 
opened the door for completely new radar application seg-
ments. Thus, ultrashort-range radar (USRR) was recently 
introduced for autonomous parking and side-looking applica-
tions at a wide FOV of °120  and ranges of up to 30 m [6]. The 
multimode radar [7], where the same hardware configures its 
operation (antenna configuration, waveform, radar echo pro-
cessing, and so forth) to various operational modes, is another 
automotive radar trend.

Vehicular radars are required to provide sensing capabili-
ties starting from zero range and, therefore, are continuous 
wave (CW) and, because of low-cost requirements, employ 
linear-frequency modulation (LFM) ([8, Ch. 16]). Other wave-
forms, such as phase modulation [9] and step frequency [10], 
were also introduced for automotive radars.

The most dramatic transformation of the vehicular radar sys-
tem is now occurring because of its role shift from a sensor that 
detects to one that images [5], [11]. Autonomous driving requires 
high-resolution sensing capabilities, and thus automotive radars 
must provide high-resolution information on the vehicle environ-
ment in the range–Doppler–azimuth–elevation domains. Range 
resolution is inversely proportional to the radar bandwidth. In 
77-GHz radars, the available bandwidth is 4 GHz, which pro-
vides sufficient range resolution. Doppler resolution is limited 
by the coherent observation time and depends on the transmit-
ted waveform, receiver processing, and target dynamics. Angu-
lar resolution is contingent upon the antenna aperture and thus 
is determined by the number and geometry of the transmit and 
receive channels, limited by the radar cost and packaging size.

Automotive radars are required to operate in dense urban 
environments with distributed objects. Therefore, the applica-
bility of conventional superresolution methods, such as mul-
tiple signal classification (MUSIC) and minimum-variance 
distortionless response (MVDR) [12], relying on spatial spar-
sity, is limited. The requirements for high-angular resolution in 
both azimuth and elevation, using a small number of channels, 
turns the MIMO radar concept [13] into an attractive alterna-
tive to the full sensor array. Thus, the majority of state-of-the-
art automotive radars use some variant of MIMO radar.

In automotive radar applications, a novel interpretation of 
the target and clutter notions is required because all of the 
dynamic or static objects above the road level are targets of 
interest, and detailed information on them is needed for auton-
omous driving. This operational scenario poses additional 
challenges for the radar processing and limits the applicability 
of conventional radar techniques to automotive radar.

This work overviews the conventional fast LFM–CW auto-
motive radar signal processing flow, emphasizes its limited 
applicability to vehicular radar scenarios, and proposes a few 
novel approaches for key performance improvements. In partic-
ular, novel range–Doppler processing, detection, clustering, and 
dynamic range (DR) enhancement methods are required, specif-
ically designed for high-resolution automotive radar. Thus, one 
of the challenges in vehicular radar operation is the discernment 
of small objects (e.g., child pedestrians) as well as large ones 
(e.g., semitrailers). Conventional implementation of detection 
methods, such as constant false-alarm rate (CFAR), are subop-
timal in the automotive environment since objects occupy mul-
tiple range–Doppler–azimuth–elevation cells. Therefore, novel 
detection methods for target recognition that use information 
from adjacent range–Doppler cells are required.

High-resolution automotive radars can generate multiple 
detections from the same object. Thus, data association methods 
are required. Detections originated by the same object have simi-
lar properties and, therefore, can be associated into clusters. Data 
similarity is determined by specific criteria and metrics, such as 
distribution in the range–Doppler–azimuth–elevation space.

Automotive radar operation challenges
The main role of the sensing suite in autonomous driving is 
to be a substitute for human driver vision and thus provide 
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reliable information on a moving vehicle’s surroundings to en-
able a prompt reaction to the dynamically changing scene and 
threats to the vehicle being driven. The autonomous sensing 
capabilities are well beyond those of human eyes, compensat-
ing for the limited artificial intelligence in comparison with 
human cognition.

The radar, along with cameras, plays a central role in auton-
omous vehicles oriented toward mass production. Automotive 
radars have multiple advantages over cameras and lidars, such as 
long operation ranges, immunity to lighting and weather influ-
ences, ability to operate behind optically nontransparent fascia, 
and direct measurement of targets’ radial velocity. Therefore, 
radars have been given a key role in autonomous vehicles. Both 
the advantages and challenges of automotive radars stem from 
the properties of their associated electromagnetic waves and 
their wavelength, which is determined by regulations. The main 
issue for automotive radar systems is to provide high-resolution 
information about multiple dynamic targets in an extremely 
cluttered automotive scene with a high update rate.

Figure 1 shows a typical urban scenario as an example of 
the automotive radar challenges described in this section. The 
radar is required to perceive this scene of a vehicle passing 
near a pedestrian. To achieve this task, high-resolution sensing 
in range–Doppler–azimuth–elevation and a sensitive detector, 
followed by clustering, tracking, and classification algorithms, 
are required. This section describes the major challenges of the 
vehicular radar that determine its design guidelines.

Scene variety
Many automotive radar challenges stem from the requirement 
to operate across a variety of scenes, ranging from urban and 
metropolitan to rural and freeway environments. These set-
tings are characterized by a wide spectrum of targets and in-
frastructures, varying by radar cross section (RCS), velocity, 
and motion pattern: road debris, animals, pedestrians, vehi-
cles, bridges, and so on. As a result, an automotive radar needs 
to be designed to detect, localize, track, and classify every-
thing from slowly moving children and animals in parking lot 
scenarios to fast-moving vehicles on freeways. Consequently, 

the necessity to support this wide range of velocities challenges 
the waveform design in terms of chirp duration, duty cycle, and 
frame size. Moreover, the tradeoff between Doppler ambigu-
ity, maximal range, and range resolution makes demands upon 
the automotive radar system design.

The large variety in target size, ranging from small RCS tar-
gets, such as on-road debris, to large RCS structures, such as 
bridges, requires a high DR. Another reason for the high DR 
requirement is the simultaneous detection of far and small targets 
and close and large objects. As a result, a high DR dictates the 
required effective number of bits (ENOB), limiting the sampling 
rate. The cost of the analog-to-digital converters (ADCs) increases 
with the DR according to DR 6.021 ENOB 1.763 dB= +  [14].

Operation in typical urban scenes is characterized by a large 
number of targets that create a continuum of radar echoes across 
the FOV, which poses a computational complexity challenge to 
the detector and the beamformer processing algorithms. More-
over, when designing a high-resolution radar, typical automo-
tive radar targets are spatially distributed and can be observed 
as a superposition of multiple point reflectors, complicating the 
detector design. In addition, the superposition of multiple point 
scatterers is observed by the radar as a single target with a highly 
variable RCS.

For typical autonomous scenarios, the radar is required 
to provide high-resolution 4D information regarding the host 
vehicle’s surroundings. These data are then used to identify 
obstacles above the road level. Thus, high angular resolution 
in elevation is required to recognize any obstacle 10 cm above 
the road surface. Identification of the drivable path further 
requires the detection of overhead objects, such as bridges 
and signs, that may interfere with the moving vehicle. Finally, 
the automotive radar needs to support a variety of active safe-
ty features, under a wide spectrum of operational conditions, 
that challenge the optimization of the radar parameters.

In dense urban environments, the vehicular radar experiences 
multipath from the surrounding surfaces. The multipath effect 
increases estimation errors and generates ghost targets, which 
are considered to be false alarms [15]. Multipath mitigation 
involves processing with additional computational complexity.

x x x
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FIGURE 1. An example of the urban environment, demonstrating some of the automotive radar challenges. (a) A vehicle passing near a pedestrian. Each 
target consists of several detections, generating a point cloud. (b) Adjacent point clouds of a pedestrian and vehicle, over several frames.
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High resolution
Autonomous driving requires information on all obstacles sur-
rounding the host vehicle above the ground level. Thus, an au-
tomotive radar needs not only to localize the surrounding ob-
jects but to provide information on their extent (and, preferably, 
shape) and classify them. These tasks require high resolution 
in range, Doppler, azimuth, and elevation to attain lidar-like 
performance. The high-resolution requirement increases the 
computational complexity of radar signal processing and re-
quires the development of computationally efficient algorithms 
to provide real-time (or low-latency) solutions to the high-di-
mensional and extensive data. 

The range resolution is given by / ,R Bc 2T =  where B  is the 
transmitted signal bandwidth. In LFM signals, ,B bx=  where 
b  denotes the chirp slope, and x  is the chirp duration. The 
Doppler resolution is given by / ,D 1 TOTT =  where TOT is 
the time on target. The TOT is limited by the overall maximal 
allowed system latency and by the maximal coherent integra-
tion interval, determined by the target’s radial velocity V  as 
follows: / .R VTOT1T  Beyond this limit, an increase in TOT 
does not contribute to the target intensity or to Doppler resolu-
tion because of the target migration to other range cells. 

Figure 2 shows a scenario in which the target’s dynamics 
exceed this limit, creating the range migration phenomenon. The 
Doppler information in a typical fast LFM automotive radar is 
extracted via an additional fast Fourier transform (FFT). High 
Doppler resolution requires a long integration time, and low Dop-
pler ambiguity necessitates a high chirp rate, resulting in a large 
number of chirps during the observation time. Therefore, high res-
olution in the range–Doppler domain needs the implementation of 
a large 2D FFT. Conventionally, in automotive radars, the FFT is 
performed by dedicated processing accelerators. The implementa-
tion of a large 2D FFT increases the processor cost, requires a larg-
er on-chip fast memory, and challenges the heat dissipation design.

A high angular resolution in azimuth and elevation requires 
a large antenna array aperture and thus a large number of 
transmit and/or receive channels. Therefore, computational 
resources are demanded to process the generated data. In addi-
tion, the need for a large antenna aperture challenges its inte-
gration in the automotive platform and drives the system cost 
as the number of transmit and receive channels increases.

Clutter
The operational environment of automotive radar differs from 
that of conventional military radars in the sense that all objects 
above the ground level are targets that need to be detected, lo-
calized, and classified. In automotive radar, any obstacle above 
the ground level is considered to be a threat, if located in the 
planned driving path of the host vehicle. Therefore, the con-
ventional clutter returns are actually targets of interest. Typi-
cally, clutter returns are weak because of low aspect angles and 
high operational frequencies. However, ground returns from a 
close proximity to the host vehicle determine the requirements 
for antenna sidelobe levels in elevation since road echoes re-
ceived through sidelobes can be stronger than echoes from far 
and weak targets at the antenna main beam.

In scenarios with a moving host vehicle, static clutter 
echoes from the road are received at different Doppler shifts, 
which is a function of the road angle ,cos cosD V i {=  where 
V  is the host vehicle speed and i  and {  are the elevation 
and azimuth, respectively, of the clutter return. The detection 
of weak and far targets within strong Doppler-spread clut-
ter challenges the automotive radar detector design. Figure 3 
illustrates a scenario of a target adjacent to clutter, where the 
target is a pedestrian and clutter originates from a fire hydrant, 
potentially masking the target.

Interference
One of the future challenges of automotive radars is interfer-
ence mitigation [16], [17]. Vehicular radar is subject to three 
types of interference: self-interference, cross interference from 
other radars on the same vehicle, and interference from other 
vehicles’ radars. Self-interference originates from strong radar 
echoes reflected by the vehicle platform, painted fascia, and the 
radome itself. These echoes mask short ranges of the automo-
tive radar and thus degrade the detection performance on close 
targets. In addition, they contribute to increasing the probability 
of false alarms and reducing the radar DR, as the self-inter-
ference often determines the saturation limit. Furthermore, the 
computational complexity increases because of the requirement 
for mitigation algorithms.
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FIGURE 2. A range–chirp map showing target migration in a range over a 
long observation time. 

FIGURE 3. A cluttered roadway scenario.
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Autonomous vehicles need surround coverage, which is achieved 
by mounting multiple radars around the vehicle. The radars have 
overlapping FOVs, which might cause mutual interference. The 
interference is both direct and reflected from targets. Thus, innova-
tive algorithms for interference mitigation are required.

When most vehicles are equipped with automotive radars, 
multiple interferences are to be expected between radars of 
adjacent vehicles. Direct and reflected interference sources are 
expected to occur in dense-traffic scenarios, where the level of 
interference depends on the distance between radars, beam pat-
tern, orientation, waveform, and the signal processing scheme. 
Interference sources increase the probability of false alarms, 
create ghost targets, and can mask true targets. Mitigation 
schemes will increase the computational complexity.

State-of-the-art automotive radar technology
State-of-the-art vehicular radar is designed to address au-
tomotive environment challenges. This is reflected in the 
radar’s hardware, system design, waveform, antenna, and 
processing chain.

Concept
To tackle the automotive environment issues, as described in 
the “Automotive Radar Operation Challenges” section, the fol-
lowing technologies have been commonly adopted for vehicular 
radars: CW–LFM MIMO, high carrier frequency, solid state, 
CMOS, and RF integrated circuit. Pulse-Doppler radars have 
minimal detectable range (blind range) since the radar’s receiver 
is turned off during the transmission interval. Automotive radars 
are required to detect targets at close proximity (starting from 
zero range), making the pulse-Doppler radar operation concept 
inappropriate for vehicular applications. Another advantage of 
CW operation is the low transmission peak power, which is 
important for operation in close proximity to the general pub-
lic and which is strictly regulated by health authorities. Pulse-
Doppler radars conventionally operate with up to a %D 10dc =  
duty cycle, and, therefore, to achieve the required average power 

,P P Davg peak dc=  they need to transmit higher peak power Ppeak  
compared with CW radars. The latter have modulated signals to 
obtain a target’s range information. The LFM waveform is the 
most common CW modulation scheme since it has high range 
resolution and allows simple and low-cost fabrication.

State-of-the-art automotive radars have adopted the MIMO 
operation concept to achieve high angular resolution at a wide 2D 

azimuth–elevation FOV, with a high update rate. The MIMO 
vehicular radar illuminates the entire FOV with a wide and static 
transmit beam, where the angular information is obtained using 
the MIMO scheme at the receiver [13]. Common alternatives of 
direction-of-arrival (DOA) estimation are scanning phased array 
and monopulse (see [8, Ch. 1]). Scanned-based DOA estimation 
and monopulse are infeasible in automotive radars because of the 
low update rate and low angular resolution.

High angular resolution, determined by the antenna beam-
width at a wide FOV, can be achieved via a multibeam beam-
forming. Analog beamforming implementation requires multiple 
circuitries for each generated beam, followed by multiple sam-
plers. The large number of beams prohibits its analog implemen-
tation, which becomes complex, expensive, and cumbersome.

An alternative approach is digital beamforming, where each 
antenna element is sampled, and digitally steered beams can be 
obtained via a discrete Fourier transform [18]. In digital beam-
forming, there is no physical constraint on the number of beams, 
which is limited only by the computational power. This process 
is applicable at the receiver in a single-input, multiple-output 
system. In a MIMO system, this concept is extended from phys-
ical elements to virtual elements by transmitting orthogonal sig-
nals and decoding them at each receiver element [13].

FOV
Autonomous driving requires surround coverage of the host 
vehicle to provide reliable information about the static and 
dynamic obstacles that can be threats for the vehicle. The re-
quirement of a low-cost system motivates the widest possible 
azimuth FOV. MIMO radar provides a wide FOV while ob-
taining narrow beams and a high angular resolution. This is 
achieved by the effect of virtual sensors. Each combination of 
receive and transmit elements generates a virtual element, with 
signal properties determined by the unique transmitter–target–
receiver path, as conceptually shown in Figure 4. The MIMO 
virtual antenna aperture is larger than that of a conventional 
phased-array antenna, providing higher angular resolution.

Regulated by the authorities, automotive radars are imple-
mented at a high carrier frequency band of 76–81 GHz. The 
radar antenna size decreases, and the angular resolution, deter-
mined by the ratio between the antenna aperture and the car-
rier frequency, increases with the carrier frequency. Therefore, a 
higher operational frequency allows smaller and lighter automo-
tive radar implementation, attaining higher angular resolution.

The Doppler resolution DT  improves linearly with increas-
ing carrier frequency ,fc

.D
f
c

2
1

TOTc
T = (1)

The higher operational frequency provides a larger available 
spectrum bandwidth for a transmitter with a constant fraction-
al bandwidth [19]. Therefore, the range resolution increases at 
a higher carrier frequency.

High carrier frequency poses a technological challenge to 
fabricate high-quality and low-loss RF components. Thus, the 
performance of RF components in terms of noise figure, phase 
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FIGURE 4. A MIMO radar antenna array.

IEEE SIGNAL PROCESSING MAGAZINE   |   September 2019   |



25

noise, antenna gain, and efficiency typically degrades with 
increasing carrier frequency. Moreover, free-space path loss 
grows as the carrier frequency increases, resulting in shorter 
radar detection range (see [8, Ch. 1]).

Automotive radars are expected to be manufactured in high 
volumes, far greater than conventional military radars. There-
fore, certain techniques and materials, e.g., solid-state CMOS, 
which meet both mass production and low-cost requirements, 
will be implemented. The most challenging aspect of radar mass 
production is antenna calibration, which conventionally is a long 
and costly process, inapplicable to mass production. Efficient 
innovative methods are required for fast and accurate calibration.

Waveform
Motivated by the requirement of high angular resolution, state-
of-the-art automotive radars adopt a MIMO approach, which 
requires orthogonal waveform generation. The simplest way to 
achieve a waveform’s orthogonality is time-division multiple ac-
cess (TDMA), where the number of TDMA cycles NTx  equals 
the number of transmit antennas. For the LFM–TDMA–MIMO 
automotive radar, the pulse repetition interval is ,T T Ncyc c Tx=  
where Tc  is the chirp period and is equal to the chirp dura-
tion. The range resolution and maximal unambiguous Dop-
pler velocity are /R bTc 2 cT =  and ( / ) ( / ),D f Tc 2 1unamb c cyc=  
respectively. The overall ,TOT N Tcyc cyc=  determined by the 
number of cycle repetitions ,Ncyc  upper-bounds the update rate 
of the radar detections /1FPS TOT#  and defines the Doppler 
resolution as ( / ) ( / ).cD f2 1 TOTcT =  Additional approaches for 
obtaining nearly orthogonal signals have been derived [20], and 
similar approaches can be adopted for automotive applications.

Conventional vehicular radars are designed for a specific 
set of active safety features, and, therefore, radar waveform 
parameters are optimized for this particular array of opera-
tional conditions. Thus, an LRR is required to provide long 
ranges for fast-moving targets (a short chirp duration for 
increasing the maximal unambiguous Doppler) with lower 
range resolution. In turn, an SRR operates at shorter ranges, 
with higher range resolution and smaller unambiguous Dop-
pler. Since the optimal waveform is scenario and mission 
dependent, the development of a radar that adapts the wave-
form according to the instantaneous radar mission and envi-
ronment is required.

Processing chain
When operated in dense urban environments characterized by 
multiple objects, the transmitted automotive radar signals are 
reflected back from the targets and clutter and then received 
and down-converted as a mixture of multiple radar echoes ac-
companied by additive receiver noise. The main task of the 
vehicular radar signal processing chain is to suppress the addi-
tive noise and detect, isolate, and classify these multiple mixed 
echoes from different objects that are prominent and separa-
ble in the 4D spectral domain of range, Doppler shift, and 2D 
DOA. Conventionally, the automotive radar processing chain 
performs this task by employing multiple integrations along the 
different dimensions [7].

In the presence of M  targets, the baseband data model at 
the kth chirp and the nth antenna receiver with a single trans-
mitter is given by

( ) ( ) ( ),x t A s t e e v t, ,n k m
m

M

m
j f kT j f

n k
1

2 2 ,c m ndm cx= - +r r xD

=

/ � (2)

where ( )s t  is the transmitted signal and ,Am  ,mx  and fdm  are 
the amplitude, time delay, and Doppler shift of the mth target, 
respectively. The time-delay difference ,m nTx  denotes the de-
lay difference between the antenna array origin and the nth 
antenna for the mth target, and ( )v t,n k  represents the additive 
receiver noise.

Stretch processing is performed by multiplying the received 
signal with the conjugated transmitted signal. For an LFM sig-
nal ( ) ,s t e j bt2

= r  one obtains
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where .A A em m
j b m

2

= r xu  It can be seen that the model consists of 
a product of sinusoids in slow-time k  and fast-time t  data. For 
uniform planar arrays, ,m nx  is linear in indices of horizontal 
and vertical elements. Thus, the model includes a product of 
sinusoids in these axes as well. This implies that, to extract 
range–Doppler–azimuth–elevation information, one needs to 
implement a 4D FFT. Prior to the digital FFT, the signal is sam-
pled with a sampling time of ,Ts  yielding [ , , ] ( ).x l k n x lT,n k s= u  
The 4D FFT is performed by
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where nh  and nv  are the horizontal and vertical antenna indi-
ces, respectively, ( )n n H n 1h v= + -  for H  horizontal anten-
nas, and d  is the antenna spacing. The resulting data cube is 
depicted in Figure 5. Targets that are distinguishable at least in 
one of these parameters can be resolved.

Leveraging the separation of the received radar echoes from 
multiple objects in the four domains, the receiver reports the tar-
get presence at a particular point in this space by the comparison 
of the received signal energy to the threshold (detection). Con-
ventionally, automotive radars use CFAR detection, in which a 
detection is declared for cells that satisfy the following condition:

[ , , , ] [ , , , ], , , , ,X p q T p q p q2 2
v 62; ;i { v i { i {+ t � (5)

where T  is the CFAR threshold and [ , , , ]p q2
vv i {t  is the noise 

variance, estimated around the cell defined by its arguments. 
As radar operation in an automotive environment pushes the ra-
dar design toward higher sensitivity (longer detection ranges of 
weaker targets), lowered CFAR thresholds raise the false-alarm 
rate beyond the desired point. Therefore, additional detection-level 
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spatiotemporal filtering, denoted as clustering and tracking, 
is conventionally implemented in vehicular radars. The con-
ventional density-based spatial clustering of applications with 
noise (DBSCAN) [21], [22] takes advantage of the high spatial 
resolution, groups together closely located detections, and rep-
resents them as a single cluster. Groups that contain few detec-
tions are marked as noise and removed, leaving the point cloud 
with an improved detection-to-false-alarm rate. Temporal fil-
tering, which is usually implemented using Kalman, particle, 
or multimodal filters [23], further increases the fidelity of the 
output data by associating temporally close clusters into tracks.

Finally, additional information on the detected and tracked 
target is extracted from the received echoes via classification, 
which may be performed with extracted micro-Doppler fea-
tures [24], spatial spread, movement along the space, or other 
information. These features can be used to characterize the 
detection or even improve upon the estimation of its param-
eters. The processing flow is depicted in Figure 6.

Antenna design
The automotive radar antenna must provide high angular reso-
lution and accuracy while being mass-produced at low cost. 
To satisfy these criteria, microstrip patch technology is often 
used for vehicular radars operated at the carrier frequency 
of 77  GHz (a wavelength of / )fc 39 mmcm= =  with a wide 
bandwidth of 4 GHz. For this wavelength scale, the required 
fabrication accuracy is on the order of micrometers, which is 
higher than currently available fabrication technologies, result-
ing in suboptimal antenna performance. The majority of mod-
ern automotive radars prioritize angular resolution in azimuth 
over that in elevation. However, the practical implementation 
of the radar-based active safety features and autonomous driv-

ing requires high angular resolution in both azimuth and eleva-
tion. Therefore, a planar antenna layout is needed to provide 
such resolution. The microstrip antennas on the printed circuit 
board have an inherently poor isolation between the antennas 
and therefore provide degraded performance.

Future solutions
This section describes the performance gaps in state-of-the-art 
automotive radars and discusses some of the required signal pro-
cessing improvements. Parts of these topics have been developed 
and intensively investigated in recent years. These areas have the 
potential to move vehicular radar technology forward, but ad-
aptation to the special needs of automotive radars is necessary.

Cognitive radar
Highly dynamic and varying roadway scenarios motivate 
the adaptive allocation of automotive radar resources. More-
over, the cost reduction requirement drives the consolidation 
of sensing capabilities to support multiple automated features 
within a single sensor. Cognitive sensing that introduces feed-
back between the receiver and the transmitter to improve scene 
perception can address these challenges. Specifically, the radar 
waveform needs to be adapted to the scene and mission: differ-
ent ranges, FOVs, target types, RCSs, and velocities. The array 
configuration can also be changed according to the tradeoff 
between angular resolution, FOV, and maximal range.

The basic idea of cognitive radar is presented next (see Fig-
ure 7). MIMO radar allows flexibility in the design of the transmit 
waveform, which may be different for each transmitting element. 
After the introduction of colocated MIMO radar in [13], the prob-
lem of optimal waveform design for various scenarios and under 
different criteria has been intensively investigated. In automotive 
radar applications, the radar task and scenario continuously change, 
and thus the transmit waveform needs to be adaptively modified 
based on history observations, using a cognitive approach.

The idea of cognitive radar was proposed in [25] and has 
been investigated in several works. A cognitive radar system 
adaptively interrogates the environment using the available 
information from previous observations, external databases, 
and task priorities. The transmit waveform can be sequentially 
adapted in the space, time, and frequency domains, based on 
previous observations, which provide relevant information 
on the scenario. Adaptive beamforming for cognitive MIMO 
radar was investigated in [26]. However, in that paper, the 
focus was on only spatial waveform design, ignoring the range 
and Doppler dependency.
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NRx

RF FE
ADC Range

FFT
Doppler

FFT
DOA
FFT Detection Clustering Postprocessing

External
Interface

FIGURE 6. A conventional automotive radar processing flow. FE: front end.



27

Consider a monostatic MIMO radar with colocated trans-
mit and receive arrays of NT  and NR  elements, respectively. In 
the presence of M  targets, the received signal model at the kth 
pulse/chirp can be expressed as

( ) ( ) ( ) ( ) ( ),
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t e t t
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where ( ),txk  ( ),tsk  and ( )tvk  denote the vectors of the received 
data, the transmit signal, and the noise vector, respectively. The 
parameters ,ma  ,m{  ,mx  and Dm~  are the complex attenuation, 
direction, propagation delay, and Doppler frequency shift of 
the kth target, respectively, and ( )aT $  and ( )aR $  are the steering 
vectors for the transmit and receive arrays, respectively. The 
Fourier coefficients of the data model in (6) are given by

( ) , , , , , , ,k l L1 2 1x H s vkl kl kl kl f fi= + = = � (7)

where ,xkl  ,skl  and ,vkl  are the lth Fourier coefficients of 
the received data, transmit signal, and noise vectors, re-
spectively, and
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is the MIMO transfer function. Let [ , , ]X x xk k kL1 f=  and 
[ , , ].S s sk k kL1 f=  A cognitive radar adaptively modifies the 

transmit signal sequence at the kth step ,Sk  given observations 
in previous steps denoted by , , .X X X( )k

k
1

1 1f=-
-6 @

The transmit signal is usually constrained according to one 
of the following approaches:

■■ Limited total energy: constsL
kl

2< </ =l 1=

■■ Limited energy at each transmitter element: [ ]s n
L

kl
2; ;/ =l 1=  

const, , ,n N1 Tf=

■■ Limited total energy at each frequency bin: ,constskl
2< < =  

, , .l L1 f=

The cognitive scheme can be formulated as follows:

optimize

subject to

( , )
signal energy constraint,
C S X( 1)

S
k

k

k

-

where ( ),C $ $  denotes the optimization criterion, which reflects 
a measure of performance. Performance bounds can serve as 
possible optimization criteria. For cases where one is inter-
ested in optimizing the parameter estimation accuracy, lower 
bounds, such as the Cramér–Rao bound or other large-error 

bounds, are usually adopted as optimization criteria. The non-
Bayesian framework is not applicable because non-Bayesian 
bounds are usually parameter dependent. Although the un-
known parameter may be substituted by its estimates, this so-
lution usually results in poor performance. To obtain a perfor-
mance measure independent of the parameters to be estimated, 
the Bayesian framework is usually preferred. This approach 
has been proposed for target localization [26].

For detection or classification problems, one may use the 
sequential hypothesis testing framework. In this approach, one 
is interested in minimizing the average sample number (ASN) 
where the decision error probabilities are fixed. Lower ASN 
bounds are inversely proportional to the Kullback–Leibler 
divergence (KLD) between the probability density functions 
under the given hypotheses. This implies that, for detection or 
classification tasks, one is required to maximize the KLD to 
optimize the performance.

Extended target detection
In typical urban scenarios, high-resolution automotive radars 
with a range resolution of several centimeters are required to 
detect range-extended targets that occupy multiple range–Dop-
pler cells. At such fine resolution, every single extended target 
appears as a set of point targets, as shown in Figure 1(a). Single-
cell-based detectors do not aggregate the entire spread target 
energy and, therefore, provide shorter detection ranges. Con-
ventional radar detectors, such as CFAR, offer degraded perfor-
mance in such scenarios because of contamination of the noise 
estimation by the interfering cells. Therefore, the development 
of alternative detectors that are robust to interference from other 
cells is required. In military applications, detectors for distrib-
uted targets were first introduced in [27] and further developed in 
[28]. These approaches cannot be directly applied to automotive 
radars, since prior information on the targets in the vehicular do-
main is typically unavailable because of the vast variety of their 
types and sizes. Alternatively, what is needed is the development 
of a detection approach utilizing rigid-body information on the 
automotive targets to integrate energy spread over multiple cells.

Doppler ambiguity
TDMA implementation of the state-of-the-art automotive 
MIMO radars results in a contradiction between the Doppler 
and the DOA requirements. This occurs because the DOA es-
timation is performed per range–Doppler cell, and, as a result, 
the DOA estimation performance directly depends on the Dop-
pler estimation [29]. In TDMA–MIMO radar, as the number 
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FIGURE 7. A cognitive radar configuration.
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of transmit antennas increases, the maximal unambiguous 
Doppler frequency decreases. Therefore, novel methods to re-
solve the Doppler ambiguity of automotive MIMO radars are 
required. For this purpose, several approaches may be adopted. 
One interesting technique is the chirp sequence waveform de-
sign presented in [30]. Moreover, at longer operational ranges 
(e.g., in freeway scenarios), a longer chirp duration is required, 
which challenges the Doppler ambiguity mitigation methods.

Multipath mitigation
Flat surfaces on roads, guardrails, buildings, signs, and bridges 
characterize automotive scenes. The radar transmitted signal 
reflects from these surfaces and interferes with the direct sig-
nal that echoes from targets. Figure 8 shows typical traffic situ-
ations, with vertical, road-induced and horizontal, guardrail-
induced multipath scenarios.

Indirect signal parameters, such as range, Doppler, azimuth, 
and elevation, differ from those of the direct signal. If they are 
similar to those of the direct signal and are beneath resolution, they 
may interfere with it, potentially disrupting target detection and 
parameter estimation. Angular information has the highest sensi-
tivity to multipath, and its estimation performance can be greatly 
degraded. If the indirect signal parameters differ beyond the ability 
of the radar to resolve, a false target may appear. This phenomenon 
is difficult to mitigate, and current radars suffer from it.

The indirect signals are determined by radar–target–envi-
ronment geometry and correlated with the direct path signal. 
Current mitigation methods utilize the difference between the 
direct and indirect signals in the time-delay, Doppler, and DOA 
domains: [15] utilizes the angular difference to filter multipath 
with MIMO space–time adaptive processing, [31] employs 
correlation, [32] proposes to track both the direct and indirect 
signals simultaneously, and [33] takes advantage of the differ-
ent indirect signal responses for up and down LFM signals to 
distinguish and mitigate them. All of these methods cannot be 
directly applied to automotive radars and need to be modified 
since the use of different waveforms is limited because of sever-
al reasons. These include the requirement of low cost, the differ-
ence of automotive clutter from that encountered with airborne 
radars, the occurrence of vehicular multipath in both azimuth 
and elevation, and the multiple moving objects that induce the 
large number of multipath returns in dense urban environments.

Angular superresolution
State-of-the-art automotive radars have a low angular resolu-
tion determined by the antenna aperture. The resolution attained 
through conventional beamforming cannot break this physical 
limitation. Therefore, vehicular radars adopt a MIMO radar ap-
proach to achieve higher angular resolution at a smaller aperture 
and a feasible number of channels [7]. Superresolution meth-
ods that are successfully used in military applications, such as 
MVDR and MUSIC, are expected to be implemented in automo-
tive radars. This task requires the development of low-computa-
tional processing algorithms and their adaptation to automotive 
scenarios with angularly spread targets (short-range and large 
objects, such as vehicles) that may occupy multiple angular cells.

Clustering
Because of high range resolution in automotive radars, targets 
(such as vehicles and pedestrians) appear as a cloud of point tar-
gets, and thus the association of these point targets to a single ob-
ject target, denoted as clustering, is required. The clustering pro-
cess consists of point target association to centroids representing 
actual objects. Thus, the DBSCAN was shown to be able to gen-
erate arbitrarily shaped clusters and to disregard noise-generated 
detections without a need for a priori knowledge of the number of 
clusters [21]. The DBSCAN was adapted to a variety of applica-
tions and input data characteristics [22]. However, its major short-
coming is its inability to provide centroids that are related to real-
life objects. Moreover, in dense automotive environments with 
multiple adjacent objects, the association task is computationally 
demanding. Therefore, novel clustering methods are necessitated 
that take into account point detection densities in the entire range–
Doppler–DOA domain and provide an indication of object shapes.

Waveform optimization
State-of-the-art automotive radars that adopt the MIMO approach 
achieve the required waveform orthogonality via TDMA opera-
tion at the expense of shortened maximal detection range and 
lower maximal unambiguous Doppler. Therefore, the practical 
implementation of vehicular MIMO radars requires the develop-
ment of a more efficient method to achieve waveform orthogonal-
ity through code-division multiple access (CDMA) via phase or 
frequency coding. The CDMA approach was intensively studied 
in the communications literature, and many efficient codes, such 
as Gold and Hadamard, were shown to achieve high orthogonali-
ty among transmitted sequences [34], [35]. However, the orthogo-
nality provided by these codes degrades with the delay or Doppler 
shifts that characterize automotive applications. Therefore, new 
code families need to be developed for efficient implementation 
of the Doppler- and delay-shift codes that in turn could enable ef-
ficient CDMA–MIMO implementation of vehicular radars.

Synthetic aperture radar
Synthetic aperture radar (SAR) mounted on the moving vehicle 
platform has a potential to improve automotive radar angular reso-
lution and enhance imaging capabilities [36], [37]. Vehicular SAR 
is especially efficient for a variety of side-looking applications, 
such as parking spot detection [38] and road boundary localization 

FIGURE 8. An illustration of multipath, with the target echo traveling in 
additional indirect paths, reflected by the road surface and guardrail.
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[39]. However, the forward direction is of the greatest interest for 
automotive radar for autonomous driving, and some preliminary 
results on forward-looking automotive SAR were shown in [40]. 
Major challenges in the application of airborne-based SAR meth-
ods to vehicular radars are motion compensation, nonlinear host 
vehicle motion, and low-grazing angles. Therefore, efficient meth-
ods for automotive SAR are a subject for future research.

Multiradar coexistence
The last decade showed an exponential growth in the number 
of automotive radars deployed in retail vehicles, and a similar 
tendency is expected in the future. Thus, the density of auto-
motive radars on the road per area is growing. As all vehicular 
radars share the same spectrum, mutual interference between 
them is expected to become a major concern. The probability 
of interference is determined by the radar waveform, transmit-
ted power, beamforming properties, and distance between the 
radars. The power of the direct interference at the receiver is
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tI t I rH I
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m
= (9)

where PrH  and GrH  are the received power at the host radar and 
its gain toward the interfering radar, PtI  and GtI  are the transmit 
power of the interfering radar and its gain toward the host radar, 

Im  is the signal wavelength, R is the distance between the radars, 
and LH  is the propagation loss between the radars. Notice that, 
in (9), the interference source experiences one-way propagation 
loss and thus increases the detection threshold of the host radar, 
which results in significant detection performance degradation.

State-of-the-art automotive radars rely on frequency, spa-
tial, and directional diversity and thus assume a low probabil-
ity of interference. However, in the near future, this assumption 
will not hold, and, therefore, new interference mitigation meth-
ods are needed. Interference can be direct or indirect and can 
be categorized according to the modulation scheme. There are 
three approaches for interference mitigation: 
1) resource allocation, e.g., via spectrum allocation, which

results in degraded system performance when no interfer-
ence is present

2) synchronization, which requires online coordination between
adjacent radars via an additional communication channel

3) waveform parameters randomization.

The first approach is the most attractive and easiest to imple-
ment (and is currently adopted in the automotive industry), but 
it might fail as the probability of interference increases. More-
over, fully autonomous vehicles will demand extremely high 
reliability for the automotive radars, which could be compro-
mised by interference in heavy-traffic scenarios where multiple 
radars operate closely adjacent. Therefore, implementation of 
additional interference mitigation approaches will be required.

Synchronization of multiple-platform radars is another ap-
proach that is expected to be adopted in the future to address the 
mutual interference problem in automotive radars. Synchronization 
and interference mitigation approaches that are widely used in cel-
lular networks, such as orthogonal frequency-division multiplex-
ing (OFDM), which divides the time–frequency resources [41], 
are expected to be adopted in the dynamic network of vehicular 
radars. However, these additional countermeasures seem to be in-
sufficient, and additional CDMA-like approaches to achieve higher 
interference suppression will be needed. Thus, different code fami-
lies could be used at different time–frequency slots of the OFDM. 
Communication-based CDMA methods cannot be directly used in 
automotive radars where higher orthogonality and interference sup-
pression are required for operation in practical roadway scenarios 
characterized by multipath, delay-Doppler spread, high DR, and 
range–Doppler–DOA ambiguity. Thus, development of interfer-
ence-resistant codes and radar network management via ad hoc 
base stations will be needed. Finally, extensive regulations for ve-
hicular radar operation and resource management will be required.

Multiple target tracking
Trackers play a significant role in radar signal processing. 
They improve localization estimation, reduce false alarms, 
deduce absolute velocity and trajectory, and generate a percep-
tion of the host vehicle’s surroundings. A typical tracker com-
prises three main blocks: prediction, association, and update. 
Since conventional trackers have been developed for sparse, 
nonmaneuverable aerial and naval environments, they cannot 
be directly used in highly dynamic and dense urban environ-
ments with multiple, closely located, and rapidly maneuvering 
targets, such as vehicles, motorbikes, bicycles, and pedestrians. 
Moreover, detection-to-track association methods developed 
for the military sparse environment, such as nearest neighbors, 
fail in dense urban scenes. For example, Figure 9 shows one 
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FIGURE 9. An interchanging vehicles association challenge.
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of the typical traffic scenarios that challenge the conventional 
detection-to-track association techniques.

Therefore, the application of conventional tracking procedures 
for automotive radars requires multiple adaptations. Thus, alterna-
tive association criteria [42] need to be developed where multiple 
radars are used in a joint association fashion [43]. In addition, the 
multihypothesis tracking approach can be more efficient in vehic-
ular radars compared with conventional Kalman tracking [44]. 
Association can also be improved by expanding the target’s feature 
space. State-of-the-art automotive radars use target position and 
velocity for detection-to-track association. Features such as class, 
micro-Doppler signature, and size can be used to improve the solu-
tion to the detection-to-track association problem.

Classification via micro-Doppler
Autonomous driving requires reliable knowledge of the vehi-
cle’s surroundings. Therefore, scene perception is an important 
component of vehicle sensing. In particular, classification of 
the detected targets is needed for threat assessment, sensing 
resource allocation, and automated control. Currently, tar-
get classification is performed mainly using computer vision 
methods applied to camera images. Typical automotive radar 
targets, such as pedestrians, cyclists, and vehicles, consist of 
multiple moving and rotating parts inducing micro-Doppler 
modulation to the radar echoes [45]. Micro-Doppler was ex-
tensively studied in military radar target classification and was 
suggested for automotive applications [46], [47].

Trends to increase the angular and Doppler resolution of auto-
motive radars motivated recent attempts to use micro-Doppler 
features for vehicular radar target classification [24], [48]. High 
angularity and range resolution allows the receipt of the micro-
Doppler of multiple moving targets’ parts individually and thus the 
construction of distinctive spatiotemporal signatures of the mov-
ing targets, enabling high-fidelity radar-based target classification. 
Advances in deep-learning methods further enhance the signifi-
cance of micro-Doppler features for radar target classification [49].

Deep learning
Deep learning is a revolutionary data-driven processing ap-
proach first introduced for image processing and lately adopted 
in other disciplines, such as speech and language recognition 
[50]. Recently, deep learning was used for radar signal process-
ing, mainly for target classification [51]. Deep learning has a 
potential for automotive radar processing tasks beyond target 
classification, such as interference mitigation, extended target 
detection and localization, design (waveform and antenna), and 
more specific tasks, such as road estimation [52].

Conclusions
This work reviewed state-of-the-art conventional automotive radar 
processing and discussed its limitations when used in practical, 
highly complex automotive scenarios. Requirements for future 
vehicular radars as a main enabler of autonomous driving were 
discussed. This overview proposed directions to improve automo-
tive radar performance by the development of alternative process-
ing approaches that are currently missing or being implemented 

in conventional military radars and cannot be directly applied to 
automotive radar without significant adaptations. SAR, micro-
Doppler-based classification, extended target detection, super-
resolution beamforming, adaptive waveforms, CDMA, and other 
discussed methods were successfully developed for other appli-
cations and thus have the potential to significantly improve the 
performance of vehicular radars. Novel interference and multipath 
mitigation methods, Doppler ambiguity elimination, multitarget 
tracking, cognitive processing, and clustering methods need to be 
further developed for the unique automotive applications.
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