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Abstract—Multiple-target tracking has increasingly gained at-
tention over the last 60 years, with the data association task being
one of the most challenging aspects in sensor data fusion due to
its computational burden. Hence, a plethora of algorithms has
been proposed to solve this data association problem. However,
most approaches are solely evaluated in comparison to algorithms
of the same class. Therefore, this paper tries to give an overview
and intends to evaluate systematically the four main classes
of multiple-target tracking filters, namely the non-Bayesian
data association filters, the Bayesian data association filters,
the intensity filters and the multi-Bernoulli filters. These four
classes are exemplified by respective filters, namely the Global
Nearest Neighbor filter, the Joint Probabilistic Data Association
filter, the Probability Hypothesis Density filter and the Poisson
multi-Bernoulli mixture filter. These four filters are evaluated
on two challenging simulated scenarios comprising situations
with false measurements as well as birth and death of targets.
The performance is assessed using the well-established GOSPA
metric. It is shown that the Poisson multi-Bernoulli mixture filter
outperforms the other three filters regarding the GOSPA metric
in these scenarios, yielding a smaller mean error and deviation in
its position estimates. This accuracy comes at the cost of a higher
runtime performance, as the other three filter types require less
computational time to produce their state estimates.

Index Terms—PMBM, PHD, JPDA, GNN, GOSPA, multiple-
target tracking

I. INTRODUCTION

In a general multiple-target system, the states of the targets
vary with time, while the number of targets might also change
due to appearing and disappearing targets in the scene. The
measurements of the sensor observing the targets are prepro-
cessed into a set of points at each time step. It is important to
be noted that existing targets may not be detected and that false
measurements may occur. As a result, at each time step, the
multi-target observation is a set of detections for which only
some are actually generated by real targets. In addition, it is
not known which target is responsible for which measurement.

A fundamental problem in multiple-target tracking (MTT)
is the unknown association of measurements with appropriate
targets. A number of MTT algorithms are used in various
tracking applications at present. The Global Nearest Neighbor
(GNN) [1], [25], [27], [28] filter is the earliest and simplest
MTT algorithm [24]. The traditional GNN method is the
multiple-target tracking extension of the Nearest Neighbor
(NN) method [25], [39] which assigns the sample point or
observation to the nearest target. The GNN method attempts to
find and to propagate the single most likely hypothesis at each
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scan [1]. One advantage of the GNN filter is that it requires
low computation time and storage space [25], as it only uses
the most probable hypothesis for data association [1]. A major
problem of the GNN filter is that with some probability
measurements are assigned to wrong targets, which can not
be corrected. Invented in the 1980s, besides the multiple hy-
pothesis tracker (MHT) [24] and probabilistic MHT (PMHT)
[40], the Joint Probabilistic Data Association (JPDA) [6], [7],
[26], [29], [30], [31] filter uses all possible measurements
by weighting the innovation of the different measurements
with the respective association probability at each time step
[26]. The JPDA filter can yield better performance than the
GNN filter in a heavily cluttered multiple-target environment
[25], but due to its combinatorial nature, the data association
problem makes up the bigger part of the computational load
in multiple-target tracking algorithms [2].

To reduce this computational burden, the Random Finite Set
(RFS) approach is an emerging and promising alternative to
the traditional association-based methods [2], [4]. In the RFS
formulation, the collection of individual targets is treated as a
set-valued state and the collection of individual observations is
treated as a set-valued observation [4]. These set-valued states
and set-valued observations are modeled as RFSs. In addition,
modeling birth and death processes of potential targets as
Poisson processes, intensity based filters like the Probability
Hypothesis Density (PHD) [12], [13], [14], [15], [16] filter
or the Cardinalized PHD (CPHD) [41] filter avoid explicit
association of measurements to targets. As a result, clustering
on the intensity densities is needed to extract explicit estimates
for the target states.

To overcome the problem that only suboptimal clustering
algorithms yielding suboptimal results can be used, the focus
was shifted towards the use of probability densities back in
target space, whereas birth and death processes are still mod-
eled as Poisson processes. With the development of conjugate
multiple-target distributions for multi-Bernoulli distributions,
meaning that the posterior multiple-target distribution has the
same functional form as the prior, a significant trend in the
RFS-based MTT algorithms has become obvious in the recent
years [9]. Two increasingly popular MTT conjugate prior
filters are the Generalized Labeled multi-Bernoulli (GLMB)
filter [14], [17], [18], [19], [20], [21], [22], [23] and the
Poisson multi-Bernoulli mixture (PMBM) filter [9], [10], [21],
[32], [33]. This paper focuses on the PMBM filter, as it uses
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no labels for its targets, similar to the GNN, JPDA and PHD
filter. The PMBM filter consists of the union of a Poisson
process and a multi-Bernoulli mixture. The multi-Bernoulli
mixture considers all the data association hypotheses, whereas
the Poisson process represents all undetected targets.

led as Poisson processes. With the development of conjugate
multiple-target distributions for multi-Bernoulli distributions,
meaning that the posterior multiple-target distribution has the
same functional form as the prior, a significant trend in the
RFS-based MTT algorithms has become obvious in the recent
years [9]. Two increasingly popular MTT conjugate prior
filters are the Generalized Labeled multi-Bernoulli (GLMB)
filter [14], [17], [18], [19], [20], [21], [22], [23] and the
Poisson multi-Bernoulli mixture (PMBM) filter [9], [10], [21],
[32], [33]. This paper focuses on the PMBM filter, as it uses
no labels for its targets, similar to the GNN, JPDA and PHD
filter. The PMBM filter consists of the union of a Poisson
process and a multi-Bernoulli mixture. The multi-Bernoulli
mixture considers all the data association hypotheses, whereas
the Poisson process represents all undetected targets.

The aim of this paper is to compare and evaluate structurally
the performance of the different classes of MTT filters. In
Section II, the GNN filter, the JPDA filter, the PHD filter
and the PMBM filter are introduced and their mathematical
background is briefly reviewed. In Section III, the four filters
are compared and evaluated on two challenging simulated
scenarios regarding their capability to estimate the number of
targets and the targets’ states. Their individual performance
is assessed by using the state of the art metric GOSPA [5].
Additionally, the run-time performance of each filter is briefly
discussed. In Section IV, concluding remarks summarizing the
accuracy and performance of the four filters are provided.

II. THE MULTIPLE-TARGET FILTERS

This section provides a brief review of the underlying
principles of the four MTT filters investigated in this work,
starting in chronological order with the GNN filter, up to the
most recent PMBM filter.

A. The Global Nearest Neighbor Filter

The simplest multiple-target filter is the GNN filter, an
extension of the NN filter to the multiple-target case [1].
The GNN filter searches for the unique joint association of
measurements to targets that minimizes a total distance or
likelihood. Hence, every measurement is only assigned to
one track neglecting less probable candidates. Realizations
of the GNN filter use Munkres algorithm [38] for the cost
optimal association of targets to measurements and to find
and propagate the single most likely hypothesis at each time
step [1]. Afterward, the filter performs standard Bayes filtering
for each target using these associated measurements directly.
Although the GNN scheme is intuitively appealing and simple
to implement, it is susceptible to track loss and exhibits conse-
quently poor performance when targets are not well separated.
As a consequence, with some probability, measurements are
assigned to wrong targets, which can not be corrected. Besides,

the GNN filter does not model birth and death processes.
Therefore, it is limited to a fixed and known number of targets.

B. The Joint Probabilistic Data Association Filter

The JPDA filter is an extension of the Probabilistic Data
Association (PDA) filter [26] to a fixed and known number
of targets. The JPDA filter uses joint association events and
joint association probabilities in order to avoid conflicting
measurement to track assignments in the presence of multiple
targets. The complexity of the calculation for joint association
probabilities grows exponentially with the number of targets
and the number of measurements. Moreover, since the basic
JPDA filter can only accommodate a fixed and known number
of targets, several novel extension have been proposed to
accommodate an unknown and time varying number of targets
[34], [35].

The key feature of the JPDA filter is the evaluation of
the conditional probabilities of the following joint association
events 0 pertaining to the current time step k, which is omitted
for simplicity, consisting of 6, the event that measurement j
originated from target ¢;, with j = 1,....m, t = 0,1,...,n7.
The target under consideration, to which measurement j is
associated in the event Hjtj, has the index ¢;. For a more
detailed explanation, the interested reader is referred to [2],

(61, [7].

C. The Probability Hypothesis Density Filter

In scenarios with many targets, the conventional multiple-
target Bayes filter tends to reach its computational limita-
tions. Therefore, in many applications it is computationally
advantageous to track target groupings instead of individual
targets. The conventional approach to such problems is the
attempt to track individual targets and assemble the group
from them. Such an approach is highly impracticable in dense
formations. Thus, in such applications, a standard technique
such as the multiple-target Bayes filter may begin to fail. The
strategy employed in the PHD filter is opposite to that used
in conventional approaches [8]. Initially, it tracks only the
overall group behavior, before attempting to detect and track
individual targets to the extent which the quantity and quality
of the data permits. The PHD filter is founded on the RFS
framework and is based on a recursion that propagates the
first-order statistical moment, or intensity, of the RFS states in
time [36]. The intensity is also known in the tracking literature
as the probability hypothesis density. This approximation was
developed to alleviate the computational intractability in the
multiple-target Bayes filter, which stems from the combinato-
rial nature of the multiple-target densities and the multiple
integrations over the multiple-target state space. The PHD
filter operates on the single-target state space and avoids the
combinatorial problem that arises from data association. These
remarkable features render the PHD filter extremely attractive

[4].
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The intensity, i.e., the first-order moment of a RFS X on the
state space X’ with probability distribution f, is a non-negative
function v(-) such that for each region S C X, we have

/Sv(a:)dx = /Sxf(x)dx . (1)

Consequently, the integral of v over any region .S results in the
expected number N of elements of X that are in S. The local
maxima of the intensity v are points in X with the highest local
concentration of expected number of elements, and therefore
can be used to generate estimates for the elements of X. The
simplest approach is to round N to the nearest whole number
and choose the resulting number of highest peaks from the
intensity. A short presentation of the PHD filter recursion,
which uses this intensity density, is given in the following,
based on [4].

Let vy and vy ,_, denote the respective intensities asso-
ciated with the multiple-target posterior density fj, and the
multiple-target predicted density fr,—1 in the recursion of
the multiple-target Bayes filter. The posterior intensity can
be propagated in time via the PHD recursion with the pre-
dicted intensity vy, which consists of three parts. The first
part (2a) denotes the intensity of the surviving targets which
transition via a transition density gyz—; from a state xy_;
at time step kK — 1 to a state xzp at time step k£ with a
probability of survival ps. The second part (2b) describes the
expected intensity [j,—1 of targets spawned from already
existing targets with intensity vg_1. The third part (2c) denotes
the intensity ;x—1 of new born targets at time step k. The
predicted intensity at time step k is given by

Vplk—1(2) = /ps(l‘k—1)9k|k4(x\xk—ﬁvk—l(lfk—ﬂdwk—l

(2a)
+ /5k|k-_1($\£k—1)vk—1(iﬂk—1)d$k—1 (2b)
+ Vipr—1(2). (2¢)

After having calculated the predicted intensity, the intensity
must be updated on the basis of the received measurements.
The updated intensity vy consists of two parts. The first
part (3a) takes the missed measurements into account, in-
dicating that a part of the predicted intensity exists, but is
still undetected. The second part (3b) comprises all received
measurements, even those coming from false alarm or clutter,
with a likelihood density i (z|x) and the probability pp(z)
of detecting the target. The intensity arising from clutter is
denoted by ¢ (z). The updated intensity at time step k& is then

vr(z) = [1 = pp(z)] - vegjp—1 () (3a)
iy po(2)lk (2|z)vkp—1(2) .
= cr(2) + [ po(xr—1)lk (2 Tr—1)vkp—1(Tr-1)
(3b)
It has been successfully shown in [4] that the Gaussian mixture
PHD (GM-PHD) filter admits a closed form solution to the
PHD recursion. This GM-PHD filter is used in the evaluation
part in Section IV.

D. The Poisson multi-Bernoulli mixture Filter

The PMBM filter is also based on the RFS framework
to model the multiple-target tracking problem in a Bayesian
fashion. As the name already indicates, it consists of the
union of a Poisson process and a multi-Bernoulli mixture. The
important property of the PMBM filter is the conjugacy of its
component probability distribution, which has been shown in
[33]. The multi-Bernoulli mixture, which considers all the data
association hypotheses, can be efficiently implemented using
a track-oriented multiple hypotheses tracking (MHT) formu-
lation. The Poisson component considers all targets that have
not yet been detected and enables an efficient management of
the number of hypotheses covering potential targets.

The Poisson component models the undetected targets,
which represent targets that exist at the current time step but
have not yet been detected. Each measurement at each time
step gives rise to a new potentially detected target. The multi-
Bernoulli mixture component models the potentially detected
targets. Any new measurement has the possibility of being
the first detection of a target, but it can also correspond to a
previously detected target. Furthermore, it can correspond to
clutter, in which case there is no new target. As this target may
or may not exist, its distribution is Bernoulli. The following
derivation is based on [3].

The considered multiple-target density uses a Poisson den-
sity fPoisson(.) on the set of undetected targets Xy and a multi-
Bernoulli mixture f™™(-) on the set of detected targets X7
Hence, the multiple-target density under consideration is given

by
>

Xyl Xp=X

f(X) — fPoisson (XU)fmbm(XT)~ (4)

The Poisson density is
fPoisson(XU) _ e—fy(z)dz [M(')]XUa 5)

where (-) represents its intensity, which is the first-order
statistical moment of the set of undetected targets Xy .

The multi-Bernoulli mixture has multiplicative weights such
that

n
F™™(Xr) o Z Z HW?,i ?i(X5), (6

J X1l W Xn=Xri=1
where o stands for proportionality, j is an index over all global
hypotheses (components of the mixtures), n is the number of
potentially detected targets and W?,i and f]bz() are the weight
and the Bernoulli density of a potentially detected target @
under the j™ global hypothesis. The set X of states in (6) is
Xr =X1...4 X,,, where X; is the state of target 7. The
symbol |4 represents the disjoint union, indicating that X
is the union of the mutually disjoint sets Xi,...,X,. The
weight of global hypothesis j is proportional to the product
of the hypothesis weights [}, w;i for n potentially detected

targets. The Bernoulli densities have the expression

1-— Tj,i X = (Z)
2i(X) = fia(z) X ={a}, (7)
0 otherwise
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where 7 ; is the probability of existence and f; ;(-) is the state
density.

In addition, for each potentially detected target, there are
single-target hypotheses, which represent possible histories
of target-to-measurement (or false detection) associations. A
single-target hypothesis, along with the existence probability
of the corresponding Bernoulli RFS, incorporates information
about the following events:

o The target never existed.

o The target exists at the current time.

o The target existed, but death occurred subsequent to its

latest detection.

Finally, a global hypothesis contains one single-target hy-
pothesis for each potential target, in conjunction with the
constraint that each measurement must be contained in exactly
one single-target hypothesis.

Global hypotheses can be expressed in terms of single-
target hypotheses. A single-target hypothesis corresponds to
a sequence of measurements associated to a potentially de-
tected target. Given a single-target hypothesis, this potentially
detected target follows a Bernoulli distribution. Therefore,
each measurement initiates a new single-target hypothesis.
At subsequent time steps, new single-target hypotheses are
created by associating single-target hypotheses with current
measurements or with a misdetection. Global hypotheses are
thus a collection of such single-target hypotheses, with the
auxiliary conditions that no measurement remains unassoci-
ated, and that a measurement can be assigned only to one
single-target hypothesis. Consistent with the GM-PHD, a GM-
PMBM implementation is chosen in Section IV.

III. EVALUATION OF THE FOUR FILTERS

In this section, the evaluation results based on different
simulated scenarios are presented to allow the direct compar-
ison of the four introduced filter types, namely represented
by the GNN, JPDA, PHD and PMBM filter. An area of size
[0,100] x [0, 100], where all units are in international system,
is considered. Target states consist of 2D position and velocity
[Pas Py» Vas Uy] 7. The GNN and JPDA filters assume that four
targets are present in the area of interest, all in the proximity
of [50,50,0,0]7. The PHD and PMBM filter consider targets
being born according to a Poisson process of intensity 0.005
and Gaussian density with mean [50, 50, 0, 0]7 and covariance
diag([502,50%,1,1]), to cover the region of interest. Each
target has a probability of survival ps = 0.99 and follows
linear Gaussian dynamics with

AS
212] L®

Al Q=2 Al
0, Ip |’ v A1,

where I,, and 0,, denote, respectively, the n x n identity and
zero matrices, A = 1 is the sampling period and o, = 1 is the
standard deviation of the process noise. Each target is detected
with probability pp = 0.9 and the measurement follows a
observation model with

H = [IQ 02],R:U€212, (9)

where o, = 1 is the standard deviation of the measurement
noise. We also consider Poisson clutter uniform over the
region of interest with \. denoting the number of expected
false measurements at each time step. The GNN, JPDA and
PMBM filters use ellipsoidal gating on measurements in order
to reduce computational complexity. The gates’ threshold
is 20. The PHD filter uses the same ellipsoidal gate to merge
components in close proximity. Moreover, the PMBM filter is
set to use a maximum of 30 global hypotheses at each time
step.

A. Scenario with Clutter

In order to investigate the performance and operational prin-
ciple of each filter, the behavior of the filters under different
scenarios is going to be investigated. The first scenario is
visualized in Figure 1. Each of the four targets moves in a
linear straight line, following a constant velocity model as
defined in (8). The false measurements are Poisson clutter
with a uniform distribution in the region of interest, where
A denotes the expected number of false alarms per time step
in the region of interest. Different values of A\, are used to
distinguish five sub-scenarios, namely A. € {0,1,2,5,10}.
To get a good sense of how well these filters work in the
presence of clutter, each of these five sub-scenarios has been
simulated a total of 100 times, and the clutter measurements in
each case randomly appear in varying positions. The metric,
which is used to evaluate the four filters, is the GOSPA metric,
with the parameters a = 2, ¢ = 10,p = 2, as proposed in [5].
The GOSPA metric consists of two parts: localization errors
for the properly detected targets and a cardinality error for
missed and false targets. A cardinality error of one corresponds
for this parametrization to a localization error of v/50. The
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Fig. 1. Four targets move in straight lines. Clutter measurements, which are
not shown here, are added to this scenario.

results for the four filters are summarized in Figure 2. The
results are visualized using boxplots [37]. As can be seen,
the PMBM filter outperforms the other three filters in every
scenario. The PMBM filter is very stable with regard to clutter
measurements. This is due to the target-to-measurement asso-
ciation. Only multi-Bernoulli components with a probability
of existence higher than a certain threshold (in this case
r = 0.60) are considered to belong to a true target. Therefore,
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the filter recognizes most clutter measurements as false alarms.
The PMBM filter only makes a false estimation regarding
the cardinality when two clutter measurements fall in close
proximity to one another between successive time steps. This
can be seen by the increasing GOSPA error with an increasing
number of clutter measurements. The PHD filter has difficulty
with clutter, as it does not make any target-to-measurement
associations. Every clutter measurement adds to the intensity
density, leading to a larger GOSPA error. It is to be noted that
PHD components with an intensity greater 0.60 are considered
to be a true target. The JPDA filter has the greatest difficulty
in the reliable estimation of target states. It commits no error
in the cardinality, but the presence of clutter tends to deflect
its estimates away from their true states, resulting in a large
GOSPA error, which becomes more severe with increasing
clutter. The GNN filter has a rather good performance in an
environment, where the number of targets is known and a low
number of clutter measurements can be expected. But as the
number of clutter measurements increases, the performance of
the GNN filter decreases. This is due to the rising probability
of using a false measurement to update the targets’ state.
The significant differences in the filters’ performances become
even more obvious by specifically analyzing one iteration with
Ae = b clutter measurements, depicted in Figure 3(a). The
PHD filter often misestimates the number of targets, whereas
the PMBM filter is very stable, only misestimating the number
of targets four times, namely at time steps k € {0,5,6,13}.
This is depicted in Figure 3(b). In the beginning, the filter
assumes that no targets are present, which results in a high
GOSPA error. The GNN and JPDA filter have a high average
GOSPA error, as they have difficulties in environments with
many clutter measurements to estimate the correct target states.
The localization error of the GOSPA metric for the PHD and
PMBM filters is depicted in Figure 3(c).

f— — GNN

— JPDA
E — PHD
<(16‘ — PMBM T
< ‘
0
o
012 T
L P
¢ !
x 8 I
2 . .
© 4 = e~ -"", —
g - —— ] - ! *
<<

0% =0 X=2 X=5 X =10

Ao=1 .
Number of Clutter Measurements

Fig. 2. The root mean square GOSPA error averaged over all time steps and
iterations of the four algorithms for different values of A.. The results are
visualized using boxplots [37].

B. Scenario with Clutter and Birth/Death of Targets

As indicated in Figure 4, this scenario is similar to the
previous one. The primary difference now is that the red target
dies after 8 time steps, and the green target is born after 16

20

RMSE GOSPA [m]
1) &
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00 5 10 15 20

(a) Accuracy errors relative to GOSPA metric of the GNN, JPDA, PHD
and PMBM filters. Shown is the overall GOSPA error for all four filters.
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(b) The cardinality error of the GOSPA metric. A cardinality error
of one adds to the GOSPA metric as a localization error of 1/50.
Visualized are the PHD and PMBM filters, as only these have a

cardinality error.
— PHD
— PMBM
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(c) The localization error of the GOSPA metric. In the beginning, the
GOSPA metric has no localization error, as the error consists only of
the cardinality error.

Fig. 3. The GOSPA metric of the GNN, JPDA, PHD and PMBM filters.
Shown is one explicit GOSPA error of each filter during each of the 20 time
steps for one iteration with Ac = 5 in Figure (a). The cardinality error of the
GOSPA metric is depicted in Figure (b) and the localization error in Figure (c).
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time steps. At each time step clutter is included, as in the
previous scenario. These false measurements are modeled by
Poisson clutter with a uniform distribution over the region
of interest and with an expected number A\, = {1,2,5,10}
of clutter measurements per time step. The targets follow
a constant velocity model, where process and measurement
noise are included as in the scenarios before. As before, each
sub-scenario has been simulated a total of 100 times for each
clutter number.
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4

Fig. 4. Four targets move in straight lines. At time step k = 8 the red target
dies. At time step k = 16 the green target is born. Clutter is added to this
scenario, but not shown in the figure.

In Figure 5, the average GOSPA error over all time steps
and iterations of each filter is shown. In most cases, the
PMBM filter outperforms the PHD filter. Only in the case
with A, = 10 and an decreased probability of detection
pp = 0.6, the PHD filter has a slightly smaller GOSPA
error than the PMBM filter. The JPDA and GNN filters are
excluded from this scenario, because they cannot handle target
birth or death events. In Figure 6(a), the GOSPA error for

E
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x 8 '
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S = - 7
<
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pp=0.9 pp=0.9 pp=0.9 pp=0.9 pp=0.6

Fig. 5. The root mean square GOSPA error averaged over all time steps and
iterations of the PHD and PMBM filter for different values of . and pp.

the PMBM and PHD filters for one iteration with birth and
death event of targets is displayed, with the parameters A, = 5
and pp = 0.9. As before, the cardinality error in Figure 6(b)
and the localization error in Figure 6(c) are depicted as well.
The PMBM filter continues to handle clutter well, the PHD
filter, however, is having more problems with clutter. The

PMBM filter manages the death of a target at time step
k = 8 well, detecting it when the measurement of the dead
target is no longer made. The PHD filter has difficulties and
takes some time to estimate the correct number of targets
present. Both filters take some time to recognize the birth
event, with the PMBM filter responding more rapidly than
the PHD filter. As can be seen at time step k = 16, when the
green target is born, both filters have problems detecting it
immediately. This results in a larger GOSPA error at this time
step. The PMBM filter recognizes the newborn target sooner
and therefore decreases its GOSPA error faster than the PHD
filter.

C. Runtime Performance of the four filters

As the four filters have been evaluated regarding the GOSPA
metric, a brief overview is given regarding the filters’ run-
time performance. All computations were performed in a
development and simulation environment with the following
specifications:

« Intel(R) Core(TM) i5-4690 CPU @ 3.50 GHz
« 16 GB RAM

o Windows 7 (64 bit operating system)

e Python 2.7.10, using only the numpy library.

The ideal scenario with A\, = 0 false measurements has been
evaluated in this case. The GNN filter is the fastest filter
regarding the runtime, needing a mean time of 0.021s for
one iteration. The PHD filter follows with a mean runtime of
0.044 s for one iteration. The JPDA filter needs an average of
0.251 s for one iteration. Finally, the PMBM filter, due to its
global hypotheses, needs an average of 0.646 s to perform one
whole iteration. This is because of the filters’ approaches to
data association. The GNN uses only the single best hypothesis
data association. The PHD uses no data association at all. The
JPDA and PMBM filters use most of their computational load
for the data association.

In the scenario with a total of A\, = 10 false measurements,
the GNN filter is still the fastest filter regarding the runtime,
needing a mean of 0.076s for one iteration. As before, the
PHD filter follows with a mean runtime of 0.529s for one
iteration. Other than before, the PMBM filter needs an average
of 2.996s for one iteration, surpassing the JPDA filter. With
an increasing number of measurements, the performance of
the JPDA filter decreases significantly. It needs an average
of 22.662s to complete one iteration, due to its use of joint
association events and joint association probabilities.

IV. CONCLUSION

Four different types of multiple-target filters have been
examined and evaluated according to the GOSPA metric.
Scenarios with the inclusion of clutter as well as birth and
death events of targets have been simulated, to assess the
performance of handling challenging scenarios. As can be
seen, the quality and accuracy of multiple-target tracking filters
have risen in the course of time. With the upcoming of the RFS
formulation, filters do no longer need to know the number of
targets to produce accurate state estimates and are therefore
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(c) The localization error of the GOSPA metric. In the beginning, the
GOSPA metric has no localization error, as the error consists only of
the cardinality error.

Fig. 6. Accuracy errors relative to GOSPA metric of the PHD and PMBM
filters for one iteration with Ac = 5 and pp = 0.9. The cardinality error
of the GOSPA metric is depicted in Figure (b) and the localization error in
Figure (c).

an improvement compared to classical multiple-target filters as
the GNN or the JPDA filters. This development accumulates
in the PMBM filter, one of the newest filters based on the RFS
formulation.

In the scenario without birth and death events of targets, the
PMBM filter outperforms the others, as its data association al-
lows it to handle clutter measurements successfully. The JPDA
filter and the GNN filter cannot handle the birth and death of
targets. In most scenarios, the PMBM filter outperforms the
PHD filter.

Regarding the runtime performance of the filters, the GNN
filter performs the fastest, followed by the PHD filter. The
JPDA and PMBM filters require the highest computational
time due to the intensive data association task.

In case of tracking many targets in close proximity, it is
recommended to use the PHD filter, as it is able to track groups
instead of separated targets, with a low runtime performance.
On the other hand, when it is of importance to clearly separate
targets, the PMBM filter is recommended, assumed enough
computing power is available.

As an outlook, to enhance the runtime performance of the
PMBM filter further, a change from a Python implementation
to a C++ implementation is proposed. Furthermore, labeled
multi-Bernoulli filters have shown to perform efficiently in
severe environments with higher computation burden [22] and
can be implemented very efficiently [18] and are therefore a
suitable alternative to the PMBM filter.
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