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Abstract— The probability hypothesis density (PHD) recursion
propagates the posterior intensity of the random finite set of
targets in time. The cardinalized PHD (CPHD) recursion is a
generalization of the PHD recursion, which jointly propagates
the posterior intensity and the posterior cardinality distribution.
The incorporation of cardinality information naturally improves
the accuracy and stability of state estimates. In general, the
CPHD recursions are computationally intractable. This paper
proposes a closed-form solution to the CPHD recursions under
linear Gaussian assumptions on the target dynamics and birth
process. Based on this solution, an effective multi-target tracking
algorithm is developed. Extensions to non-linear models are also
given using linearization and unscented transform techniques.
The proposed CPHD implementations not only sidestep the need
to perform data association found in traditional methods, but also
dramatically improve the accuracy of individual state estimates
as well as the variance of the estimated number of targets when
compared to the standard PHD filter.

I. INTRODUCTION

The objective of multi-target filtering is to jointly estimate
the time-varying number of targets and their states from
observation sets in the presence of data association uncertainty,
detection uncertainty, and noise. The problem of associating
measurements to targets is the biggest challenge in multi-
target filtering, and is the subject of numerous works [1], [2].
Mahler’s Finite set statistics (FISST) is a recent framework for
multi-target filtering that avoids explicit associations between
measurements and targets [3], [4]. Using random finite sets
(RFSs) to model the collections of targets and observations led
to an elegant multi-target generalization of the (single-target)
Bayes filter. Moreover, FISST-based multi-target filters such as
multi-target Bayes filter, the Probability Hypothesis Density
(PHD) filter [3], [4] have attracted considerable interest.

The PHD filter is an approximation developed to alleviate
the intractability in the multi-target Bayes filter [3]. This
approximation propagates the PHD or intensity of the RFS of
states in time, and has the distinct advantage that it operates
only on the single-target state space and completely avoids any
data association computations. Contrary to the belief that the
PHD filter is intractable [5] and that no closed form recursions
exist [6], a full sequential Monte Carlo (SMC) implementation
was proposed in [7], and a closed form solution to the
PHD recursion was derived for linear Gaussian multi-target
models in [8], [9]. Moreover, this solution can be extended to

accommodate non-linear models, thereby providing a compu-
tationally efficient class of multi-target filtering algorithms.

The PHD filter assumes a Poisson distribution in the number
of targets. Hence, it produces unreliable estimates of the
number of targets when the number of targets is high. The
PHD filter is herein referred to as the Poisson PHD filter to
be precise. In [10], [11], Mahler relaxed the Poisson assump-
tion on the number of targets and derived the cardinalized
PHD (CPHD) filter, which jointly propagates the intensity
function and the entire probability distribution of the number
of targets. The CPHD filter is more complex that the PHD
filter as the propagation equations for the posterior cardinality
and intensity are coupled. Jointly propagating the cardinality
distribution and the intensity promises better performance than
the PHD filter. However, at present no closed form solutions
are available for the CPHD recursions [10], [11].

This paper proposes an analytic solution to the CPHD
recursions for the class of linear Gaussian multi-target models.
In particular, it is shown that if the initial intensity is a
Gaussian mixture, then so are all subsequent posterior intensi-
ties. Furthermore, closed form recursions for the posterior car-
dinality distribution and the posterior intensity in terms of the
weights, means and covariances of its constituent components
are derived. The resulting multi-target filter, herein referred
to as the Gaussian mixture CPHD filter, has a computational
complexity that is linear in the number of targets and cubic
in the number of measurements. Extensions to non-linear
models are also proposed using linearization and unscented
transform techniques. The Gaussian mixture representation of
the intensity also allows state estimates to be extracted much
more efficiently and reliably than in particle-based techniques.

Our proposed multi-target filter is a generalization of the
Gaussian mixture PHD filter described in [9]. Although both
filters propagate Gaussian mixture intensities analytically in
time, there are two key differences. Firstly, the intensity prop-
agation equation in the CPHD filter is much more complex
than that of the PHD filter. Secondly, the CPHD filter addi-
tionally propagates the posterior cardinality distribution which
is coupled to the propagation of the posterior intensity. Indeed,
the Gaussian mixture CPHD recursions reduce to the Gaussian
mixture PHD recursions if the cardinality distributions of the
posterior and predicted RFSs are Poisson.



II. THE CARDINALIZED PHD FILTER

The cardinalized PHD (CPHD) filter was developed in [10],
[11] to address the practical limitations of the Poisson PHD
filter. For complete details on the derivation, the reader is
referred to [10], [11]. In essence, the strategy behind the CPHD
filter is to propagate not only the first moment of the RFS
of targets, but also the entire probability distribution of the
number of the targets. The first order moment of a random
finite set X on X , also known as the PHD or intensity function,
is a non-negative function v on X with the property that for
any closed subset S ⊆ X

E [|X ∩ S|] =
∫

S

v(x)dx

where |X| denotes the number of elements of X . In other
words, for a given point x, the intensity v(x) is the density
of expected number of targets per unit volume at x. An
RFS whose elements are i.i.d according to v/

∫
v(x)dx, but

has arbitrary cardinality distribution is called an i.i.d cluster
process [12] or a generalized Poisson RFS [10], [11].

The CPHD filter rests on the following assumptions:
• Each target evolves and generates measurements indepen-

dently of one another
• The birth RFS and the surviving RFSs are independent

of each other
• The clutter RFS is generalized Poisson and independent

of the measurement RFSs.
The above assumptions are the same as those in the Poisson

PHD filter, except that in this case there is no spawning and
clutter is generalized Poisson.

Before proceeding to the CPHD recursions, some notation
is in order. We denote by C`

j the binomial coefficient `!
j!(`−j)! ,

Pn
j the permutation coefficient n!

(n−j)! , 〈·, ·〉 the inner product
defined between two real valued functions1 α and β by

〈α, β〉 =
∫
α(x)β(x)dx

(or
∑∞

`=0 α(`)β(`) when α and β are real sequences), and
ej (·) the elementary symmetric function of order j defined
for a finite set Z of real numbers by

ej (Z) =
∑

S⊆Z,|S|=j

∏
ζ∈S

ζ

with e0 (Z) = 1 by convention.
The CPHD filter proceeds as follows. Let vk|k−1 and pk|k−1

denote the intensity and cardinality distribution associated with
the predicted multi-target state. Let vk and pk denote the inten-
sity and cardinality distribution associated with the posterior
multi-target state. Consider the multi-target Bayes filter and
assume that the predicted and posterior multi-target RFSs at
each time step are generalized Poisson. Then, the multi-target
posterior intensity and posterior cardinality distribution can
be propagated in time with the CPHD prediction and CPHD
update [10], [11].

1when α is constant 〈α, β〉 = α
R
β(x)dx

The CPHD prediction is given by (1)-(3)

pk|k−1(n) =

nX
j=0

pΓ,k(n− j)Πk|k−1[vk−1, pk−1](j), (1)

vk|k−1(x) =

Z
pS,k(ζ)fk|k−1(x|ζ)vk−1(ζ)dζ+γk(x), (2)

where

Πk|k−1[v, p](j) =

∞X
`=j

C`
j

〈pS,k, v〉j〈1 − pS,k, v〉`−j

〈1, v〉`
p(`), (3)

fk|k−1(·|ζ) = single target transition density
at time k given previous state ζ,

pS,k(ζ) = probability of target existence
at time k given previous state ζ,

γk(·) = intensity of spontaneous births,
pΓ,k(·) = cardinality distribution of births.

The CPHD update is given by (4)-(6)

pk(n) =
Υ0

k[vk|k−1;Zk](n)pk|k−1(n)

〈Υ0
k[vk|k−1;Zk], pk|k−1〉

, (4)

vk(x) = (1 − pD,k)
〈Υ1

k[vk|k−1;Zk], pk|k−1〉
〈Υ0

k[vk|k−1;Zk], pk|k−1〉
vk|k−1(x)

+
X

z∈Zk

ψk,z(x)
〈Υ1

k[vk|k−1;Zk\{z}], pk|k−1〉
〈Υ0

k[vk|k−1;Zk], pk|k−1〉
vk|k−1(x), (5)

where

Υu
k [v;Z](n) =

min(|Z|,n)X
j=0

(|Z| − j)!pK,k(|Z| − j)Pn
j+u

×
〈1 − pD,k, v〉n−(j+u)

〈1, v〉n
ej (Ξk(v, Z)) , (6)

ψk,z(x) = 〈1,κk〉
κk(z) gk(z|x)pD,k(x),

Ξk(v, Z) = {〈v, ψk,z〉 : z ∈ Z} ,
gk(·|x) = single target measurement likelihood

at time k given current state x,
pD,k(x) = probability of target detection

at time k given current state x,
κk(·) = intensity of clutter,
pK,k(·) = cardinality distribution of clutter.

As previously mentioned, the main weakness of the Poisson
PHD filter is that information on the number of targets
is given by a single parameter. The CPHD filter addresses
this weakness by propagating the entire posterior cardinality
distribution in addition to the posterior intensity. The CPHD
filter is thus first order in the multi-target state but higher order
in the target number. Notice that although the CPHD filter is
more complex than the Poisson PHD filter, the CPHD filter
still avoids data association computations and still operates
exclusively on the single target state space X . The CPHD
recursions are also intractable since they similarly encounter
the ‘curse of dimensionality’. In the next section, we propose
a closed form Gaussian mixture solution.
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III. CLOSED FORM CPHD RECURSION FOR LINEAR
GAUSSIAN MODELS

In this section, closed form expressions for the CPHD re-
cursions (1)-(3) and (4)-(6) are derived for the special class of
linear Gaussian multi-target models. The model assumptions
are first given in Section III-A and closed form expressions for
the CPHD recursions are derived in III-B. An efficient method
for performing state extraction is described in Section III-C.
Implementation issues are considered in Section IV.

A. Assumptions

The class of linear Gaussian multi-target models consists
of standard linear Gaussian assumptions for the transition and
observation models of individual targets, as well as certain
assumptions on the birth, death and detection of targets:

• Each target follows a linear Gaussian dynamical model
i.e.

fk|k−1(x|ζ) = N (x;Fk−1ζ,Qk−1), (7)
gk(z|x) = N (z;Hkx,Rk), (8)

where N (·;m,P ) denotes a Gaussian density with mean
m and covariance P , Fk−1 is the state transition matrix,
Qk−1 is the process noise covariance, Hk is the observa-
tion matrix, and Rk is the observation noise covariance.

• The survival and detection probabilities are state inde-
pendent, i.e.

pS,k(x) = pS,k (9)
pD,k(x) = pD,k (10)

• The intensity of the birth RFS is a Gaussian mixture of
the form

γk(x) =
Jγ,k∑
i=1

w
(i)
γ,kN (x;m(i)

γ,k, P
(i)
γ,k), (11)

where Jγ,k, w(i)
γ,k, m(i)

γ,k, P (i)
γ,k, i = 1, . . . , Jγ,k, are given

parameters that determine the shape of the birth intensity.

B. CPHD Closed Form Recursions

For the linear Gaussian multi-target model, the following
two propositions present a closed-form solution to the CPHD
recursion (1)-(3) and (4)-(6). These propositions show that if
the prior intensity at any given time is a Gaussian mixture, then
so are the corresponding predicted and updated intensities.
These propositions also show how the posterior intensity (in
the form of its Gaussian components) and the cardinality
distribution are analytically propagated in time.

Proposition 1 Suppose at time k−1 that the posterior inten-
sity vk−1 and posterior cardinality pk−1 are given, and that
the posterior intensity is a Gaussian mixture of the form

vk−1(x) =

Jk−1X
i=1

w
(i)
k−1N (x;m

(i)
k−1, P

(i)
k−1). (12)

Then, the predicted intensity at time k is also a Gaussian
mixture, and the CPHD prediction simplifies to

pk|k−1(n) =
nX

j=0

pΓ,k(n−j)
∞X

`=j

C`
jpk−1(`)pj

S,k

�
1−pS,k

�`−j (13)

vk|k−1(x) = vS,k|k−1(x) + γk(x), (14)

where γk(x) is given in (11),

vS,k|k−1(x) = pS,k

Jk−1X
j=1

w
(j)
k−1N (x;m

(j)
S,k|k−1

, P
(j)
S,k|k−1

), (15)

m
(j)
S,k|k−1

= Fk−1m
(j)
k−1, (16)

P
(j)
S,k|k−1

= Qk−1 + Fk−1P
(j)
k−1F

T
k−1. (17)

Proposition 2 Suppose at time k − 1 that the predicted
intensity vk|k−1 and predicted cardinality pk|k−1 are given,
and that the predicted intensity is a Gaussian mixture of the
form

vk|k−1(x) =

Jk|k−1X
i=1

w
(i)
k|k−1

N (x;m
(i)
k|k−1

, P
(i)
k|k−1

). (18)

Then, the posterior intensity at time k is also a Gaussian
mixture, and the CPHD update simplifies to

pk(n) =
Ψ0

k[wk|k−1, Zk](n)pk|k−1(n)

〈Ψ0
k[wk|k−1, Zk], pk|k−1〉

(19)

vk(x) = (1 − pD,k)
〈Ψ1

k[wk|k−1, Zk], pk|k−1〉
〈Ψ0

k[wk|k−1, Zk], pk|k−1〉
vk|k−1(x)

+
X

z∈Zk

Jk|k−1X
j=1

w
(j)
k (z)N (x;m

(j)
k (z), P

(j)
k ) (20)

where

Ψu
k [w,Z](n) =

min(|Z|,n)X
j=0

(|Z| − j)!pK,k(|Z| − j)Pn
j+u

×
�
1 − pD,k

�n−(j+u)

〈1, w〉j+u
ej (Ξk(w,Z)) (21)

Ξk(w,Z) =

�
〈1, κk〉
κk(z)

pD,kw
T qk(z) : z ∈ Z

�
, (22)

wk|k−1 = [w
(1)
k|k−1

, ..., w
(Jk|k−1)

k|k−1
]T , (23)

qk(z) = [q
(1)
k (z), ..., q

(Jk|k−1)

k (z)]T , (24)

q
(j)
k (z) = N (z;Hkm

(j)
k|k−1

, Rk +HkP
(j)
k|k−1

HT
k ), (25)

w
(j)
k (z) = pD,kw

(j)
k|k−1

q
(j)
k (z)

〈Ψ1
k[Wk|k−1, Zk\{z}], pk|k−1〉
〈Ψ0

k[Wk|k−1, Zk], pk|k−1〉
,

(26)

m
(j)
k (z) = m

(j)
k|k−1

+K
(j)
k (z −Hkm

(j)
k|k−1

), (27)

P
(j)
k = [I −K

(j)
k Hk]P

(j)
k|k−1

, (28)

K
(j)
k = P

(j)
k|k−1

HT
k (HkP

(j)
k|k−1

HT
k +Rk)−1. (29)

Propositions 1 and 2 can be established by applying Lem-
mas 1 and 2 in [9] to the CPHD recursions. Following [9],
Proposition 1 is established by applying Lemma 1 to evaluate
the integral

∫
fk|k−1(x|ζ)vk−1(ζ)dζ. Similarly, Proposition 2

is established by applying Lemma 2 to gk(x|z)vk|k−1(x) to
convert this product to a Gaussian mixture.

chisy
Ink

chisy
Ink

chisy
Ink



It follows by induction from Propositions 1 and 2 that if
the initial intensity v0 is a Gaussian mixture (including the
case where v0 = 0), then all subsequent predicted intensities
vk|k−1 and posterior intensities vk, are also Gaussian mixtures.
Proposition 1 provides closed-form expressions for computing
the means, covariances and weights of vk|k−1 from those of
vk−1, and also for computing the distribution pk|k−1 from
pk−1. Proposition 2 then provides closed-form expressions
for computing the means, covariances and weights of vk

from those of vk|k−1, and also for computing the distribution
pk from pk|k−1, when a new set of measurements arrives.
Propositions 1 and 2 are, respectively, the prediction and
update steps of the CPHD recursion for linear Gaussian multi-
target models, herein referred to as the Gaussian mixture
CPHD recursion.

C. Multi-target State Extraction

Given the posterior intensity vk and posterior cardinality
pk at each time step k, estimation of individual target states is
generally non-trivial since the form of the intensity function is
not known. When particle approximations are used, clustering
techniques are additionally required to partition the particle
population into an estimated number of clusters, each of which
corresponds to state estimates. However, this approach is not
only computationally expensive but also extremely sensitive
to the estimate of the number of targets, as demonstrated
in [7] using the Poisson PHD filter. In contrast, performing
state extraction with the Gaussian mixture CPHD filter is very
straightforward since the means of the mixture components are
the local maxima of the posterior intenstiy. Thus, all that is
required is to first estimate the number of targets, and then to
extract as state estimates the relevant number of components
from the posterior intensity having the highest weights. The
number of targets can be estimated using for example an MAP
or EAP estimator on the posterior cardinality distribution.

IV. IMPLEMENTATION ISSUES

Closer examination of the Gaussian mixture CPHD recur-
sions reveals a number of numerical issues which need to be
addressed in order to design an efficient and practical filter.
Each of these issues is considered in turn below.

A. Computing Cardinality Distributions

It is generally not possible to represent and propagate the
cardinality distribution in full since it may have an infinite tail.
However, if it is known in advance that there is a maximum
possible number of targets, the distribution can be accurately
represented with a finite number of terms {pk(n)}Nmax

n=0 . This
is a reasonable approximation when Nmax is significantly
greater than the number of targets on the scene at any time.
Moreover, it can be seen from the CPHD recursions that if
the initial cardinality distribution has a finite support, then the
equations for computing the mixtures weights and cardinality
distributions reduce to finite sums.

B. Computing Elementary Symmetric Functions

Attempting to evaluate the elementary symmetric functions
directly from the definition is clearly infeasible. Fortunately,
there is a much quicker way to perform the evaluation using
a basic result from algebra and combinatorics theory known
as the Newton-Girard formulas or equivalently Vieta’s Theo-
rem. The result can be found in [13] and is summarized as
follows. Let ρ1, ρ2, . . . , ρM be distinct roots of the polynomial
αMxM +αm−1x

M−1 + . . .+α1x+α0. Then, the elementary
symmetric functions ej(·) for orders j = 0, . . . ,M are given
by ej(ρ1, ρ2, . . . , ρM ) = (−1)jαM−j/αM . The elementary
symmetric functions can thus be evaluated by expanding out
the polynomial with roots given by the arguments to the
symmetric function. This can be implemented with a variety of
methods, for example an appropriate recursion or convolution.

C. Managing Mixture Components

Similar to Gaussian mixture PHD filter [9], the number
of Gaussian components required to represent the posterior
increases without bound. Fortunately, to mitigate this problem
the ‘pruning’ procedure described in [9] is also directly
applicable for the CPHD filter. The basic idea is to discard
components with negligible weights and merge components
that are close together.

V. EXTENSION TO NON-LINEAR MODELS

Analogous to the approach in [9] for extending the Gaussian
mixture PHD filter to non-linear models, two non-linear ex-
tensions of the Gaussian mixture CPHD filter are proposed.
In essence, the original assumptions of the CPHD filter are
retained, but the assumptions on the form of the single target
dynamical model given by the transition equation fk|k−1(·|·)
and measurement equation gk(·|·) are relaxed to the non-
linear functions in the state and noise variables. Then, based
on taking local linearizations of fk|k−1 and gk, the extended
Kalman CPHD (EK-CPHD) filter is proposed. Also, based on
applying the unscented transform to propagate fk|k−1 and gk,
the unscented Kalman CPHD (UK-CPHD) filter is proposed.
Note that in comparison to a particle implementation, the EK-
CPHD and UK-CPHD filters are much less computationally
expensive, and that state estimates can still be extracted very
easily as a result of the underlying Gaussian implementation.

VI. SIMULATIONS

In the following examples, a time varying number of targets
is observed in clutter over a two dimensional region. The
first example illustrates in detail a linear Gaussian multi-
target scenario whereas the second illustrates a non-linear
scenario with the EK-CPHD and UK-CPHD approximations
discussed in Section V. In both examples, the filter calculates
the cardinality distribution to Nmax = 100 terms and pruning
is performed at each time step using a weight threshold of
T = 10−5, a merging threshold of U = 4m, and a maximum
of Jmax = 100 Gaussian components.
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A. Example 1

The surveillance region is the square [−1000, 1000] ×
[−1000, 1000] (units are in m). For clarity, a 5 target scenario
is considered here. Targets appear from various birth locations
at various times and also occasionally disappear. The target
state variable is a vector of planar position and velocity
xk = [ px,k, py,k, ṗx,k, ṗy,k ]T . The single-target transition
model is linear Gaussian specified by

Fk =
[
I2 ∆I2
02 I2

]
, Qk = σ2

ν

[
∆4

4 I2
∆3

2 I2
∆3

2 I2 ∆2I2

]
,

where In and 0n denote the n×n identity and zero matrices,
∆ = 1s is the sampling period, and σν = 5(m/s2) is the
standard deviation of the process noise. The probability of
target survival pS,k = 0.99. The birth process is Poisson with
intensity γk(x) = 0.03N (x;m(1)

γ , Pγ) + 0.02N (x;m(2)
γ , Pγ)

where m
(1)
γ = [ 250,−10,−250, 0 ]T , m

(2)
γ = [ −

500, 10,−500, 0 ]T , Pγ = diag([ 100, 100, 25, 25 ]T ). The
probability of target detection pD,k = 0.98. The single-target
measurement model is also linear Gaussian with

Hk =
[
I2 02

]
, Rk = σ2

εI2,

where σε = 10m, is the standard deviation of the measurement
noise. Clutter is assumed uniform Poisson with intensity
κk(z) = λcV u(z), where u(·) is a uniform probability density
over the surveillance region, V = 4× 106m2 is the ‘volume’
of the surveillance region, and λc = 12.5 × 10−6m−2 is the
clutter intensity (giving an average of 50 clutter returns per
scan).

Fig. 1 plots the x and y components of the true trajectories
with cluttered measurements against time. The Gaussian mix-
ture CPHD filter’s position estimates are shown in Fig. 2 for
the x and y components against time. It can be seen that the
filter correctly identifies all target births from the two locations
and tracks them accordingly, and correctly identifies two target
deaths at times k = 60 and k = 70. Also note that the filter
has no difficulty resolving the two targets which cross paths
at time k = 48.

To evaluate the performance for the current scenario, 1000
Monte Carlo runs are performed on the same track data but
with randomly generated target and clutter measurements.
In Fig. 3(a) the Wasserstein miss distance [14] between the
estimated and true multi-target states is shown, and in Fig. 3(b)
the mean and standard deviation of the estimated cardinality
distribution is shown along with the true number of targets. It
can be seen that the filter estimates the time varying number
of targets accurately and that the variance of the estimate is
reasonable (and much improved from the Poisson PHD filter).
Note that the peaks in Fig. 3(a) coincide with time instants
where there is change in the true number of targets Fig. 3(b),
and also that the peaks settle to smaller values very quickly.
This can be expected since the filter makes an error when the
number of target suddenly changes, and subsequently requires
several time steps to validate new or deleted tracks using
measurement data.
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Fig. 1. Measurements and true target positions.
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Fig. 2. Position estimates of the Gaussian mixture CPHD filter.
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Fig. 3. (a) Wasserstein distance (b) Cardinality statistics

B. Example 2

In this non-linear example, a nearly constant turn model
having varying turn rate together with bearing and range
measurements is considered. The observation region is the



half disc of radius 2000m. Again, for clarity only 5 targets
are considered in which there are various births and deaths
throughout the simulation. The target state variable xk =
[ x̃T

k , ωk ]T comprises the planar position and velocity x̃T
k =

[ px,k, ṗx,k, py,k, ṗy,k ]T as well as the turn rate ωk. The state
transition model is

x̃k = F (ωk−1)x̃k−1 +Gwk−1 (30)
ωk = ωk−1 + ∆uk−1 (31)

where

F (ω) =


1 sin ω∆

ω 0 − 1−cos ω∆
ω

0 cosω∆ 0 − sinω∆
0 1−cos ω∆

ω 1 sin ω∆
ω

0 sinω∆ 0 cosω∆

 , G =


∆2

2 0
T 0
0 ∆2

2
0 ∆

 ,
wk−1 ∼ N (·; 0, σ2

wI), and uk−1 ∼ N (·; 0, σ2
uI) with ∆ =

1s, σw = 15m/s2, and σu = π/180rad/s. The sensor
observation is a noisy bearing and range vector given by

zk =

[
arctan(px,k/py,k)√

p2
x,k + p2

y,k

]
+ εk (32)

where εk ∼ N (·; 0, Rk), with Rk = diag([ σ2
θ , σ

2
r ]T ),

σθ = 2(π/180)rad, and σr = 10m. The
birth process is Poisson with intensity γk(x) =
0.1N (x;m(1)

γ , Pγ) + 0.1N (x;m(2)
γ , Pγ) where m

(1)
γ =

[ − 1000, 0,−500, 0 0 ]T ,m(2)
γ = [ 1050, 0, 1070, 0 0 ]T , and

Pγ = diag([ 50, 50, 50, 50, 6(π/180) ]T ). The probability of
target survival and detection are pS,k = 0.99 and pD,k = 0.98
respectively. Clutter is Poisson with intensity λc = 3.2×10−3

(radm)−1 over the region [−π/2, π/2]rad × [0, 2000]m
(giving an average of 20 clutter points per scan).

Both the EK-CPHD and UK-CPHD filters are run on the
same measurement data. The true trajectories and filter outputs
for the UK-CPHD are shown in Fig. 4. The results for EK-
CPHD are very similar and are not shown here. It can be seen
that the EK and UK approximation to the Gaussian mixture
CPHD are able to identify all target births and track the non-
linear motion well. Notice also that the filters have no trouble
resolving two targets which cross paths at time k = 80.

VII. CONCLUSION

This paper has proposed a Gaussian mixture implementation
of the cardinalized Probability Hypothesis Density (CPHD)
filter as a solution to the multi-target detection and estimation
problem. We have shown that for the class of the linear
Gaussian multi-target models, the CPHD recursions admit
closed form solutions. In particular, closed form expressions
for propagating the Gaussian mixture intensity, as well as for
the cardinality distribution have been derived. Furthermore,
efficient techniques for propagating the intensity and cardi-
nality distribution have been given. Extension to non-linear
models have been provided via linearization and unscented
transform techniques. Simulations have verified that the pro-
posed Gaussian mixture CPHD filter performs well and shows
a dramatic reduction in the variance of the estimated target
number when compared to the Poisson PHD filter.
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Fig. 4. Position estimates of the UK-CPHD filter.
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