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The theoretically optimal approach to multisensor-multitarget

detection, tracking, and identification is a suitable generalization

of the recursive Bayes nonlinear filter. Even in single-target

problems, this optimal filter is so computationally challenging

that it must usually be approximated. Consequently, multitarget

Bayes filtering will never be of practical interest without the

development of drastic but principled approximation strategies.

In single-target problems, the computationally fastest approximate

filtering approach is the constant-gain Kalman filter. This

filter propagates a first-order statistical moment—the posterior

expectation—in the place of the posterior distribution. The

purpose of this paper is to propose an analogous strategy for

multitarget systems: propagation of a first-order statistical

moment of the multitarget posterior. This moment, the probability

hypothesis density (PHD), is the function whose integral in any

region of state space is the expected number of targets in that

region. We derive recursive Bayes filter equations for the PHD

that account for multiple sensors, nonconstant probability of

detection, Poisson false alarms, and appearance, spawning,

and disappearance of targets. We also show that the PHD is

a best-fit approximation of the multitarget posterior in an

information-theoretic sense.
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NOMENCLATURE

v(S) Lebesgue measure of set S (IIB6)
1S(x) Indicator function of set S (IIIA)
±w(x) Dirac delta function concentrated

at w
±X(x) Sum of Dirac deltas at elements of

X (IVC2)
¢w(S) Dirac measure concentrated at w

(VIA)
hX Product of h(x) with x in X (IIIA)
x Single-target state-vector (IIB1)
X Random state-vector
X Single-target state space (IIB1)
x ,x [j] State of jth sensor (VD)
z,zk Single observation collected at

time-step k (IIB2)
z[j] Single observation from jth

sensor (IIB2)
Z Random observation-vector
Z[j] Observation space for jth sensor

(IIB2)
X Finite set of target state-vectors
Z,Zk Finite set of observations collected

at time-step k
Z [j] Observation-set collected by jth

sensor (IIB2)
Zk : z1, : : : ,zk Time-sequence of observations
Z (k) : Z1, : : : ,Zk Time-sequence of observation-sets
¥ Random state-set (finite subset of

state space) (IIB8)
§ Random observation-set (IIB6)

S f(Y)±Y Set integral on region S of Y
(IIB5)

f(Y)±Y Set integral on S =Y (IIB5)
¯ª (S) Belief-mass function of random

finite set ª (IIB6)
±¯ª
±y
(S) First-order set derivative of ¯ª (S)

(IIB7)
±¯ª
±Y

(S) General set derivative of ¯ª (S)
(IIB7)

±n¯ª
±y1 ±yn

(S) General set derivative of ¯ª (S)
(IIB7)

fª (X) Multiobject probability density of
ª (IIB5)

Dª (X) Multitarget moment density of ª
(IIIA)

Gª [h] Probability generating functional
of ª (IIIA)

±nGª
±y1 ±yn

[h] Iterated functional derivative of
Gª [h] (IIIB)

fk+1 k(x y) Single-target Markov transition
density

Lz(x) = fk(z x) Single-sensor/target likelihood
density

ck(z) Distribution of Poisson clutter
process (VC)
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¸k Average number of Poisson clutter
observations (VC)

pD(x) = pD(x,x ) Probability of detection (VC)
fk k(x Zk) Single-target posterior density, the

distribution of random vector Xk k
fk+1 k(x Zk) Single-target predicted posterior

density, the distribution of random
vector Xk+1 k (IIA3)

LZ(X) = fk(Z X) Multisensor/target likelihood
density (IIB4)

fk+1 k(X Y) Multitarget Markov transition
density (IIB4)

fk k(X Z (k)) Multitarget posterior density, the
distribution of random state-set
¥k k (IIB7)

fk+1 k(X Z (k)) Predicted multitarget posterior, the
distribution of random state-set
¥k+1 k (IIB7)

Dk k(x Z (k)) PHD of ¥k k,fk k(X Z(k))
(IA, IVC)

Dk+1 k(x Z (k)) PHD of ¥k+1 k,fk+1 k(X Z (k))
(IA, IVC)

Dk k(X Z (k)) Multitarget moment density of
¥k k (IVA)

Gk k[h] Probability generating functional
of ¥k k (IIIA)

bk+1 k(Y x) Multitarget posterior of spawned
targets (VB)

bk+1 k(y x) PHD of bk+1 k(Y x) (VB)
bk+1 k(Y) Multitarget posterior of entering

targets (VB)
bk+1 k(y) PHD of bk+1 k(Y) (VB).

I. INTRODUCTION

The following Bayesian discrete-time recursive
nonlinear filtering equations constitute the theoretical
foundation for optimal single-sensor, single-target
detection, tracking and identification [11; 55; 4, pp.
373–377; 16, p. 174]:

fk+1 k(x Zk) = fk+1 k(x w)fk k(w Zk)dw (1)

fk+1 k+1(x Zk+1) = K 1fk(zk+1 x)fk+1 k(x Zk)

(2)
where
1) x is the state-vector of the target at time-step k

and zk is the sensor observation collected at time-step
k;
2) fk k(x Zk) is the Bayes posterior distribution

conditioned on the time-sequence Zk : z1, : : : ,zk of
measurements accumulated at time-step k;
3) Lz,k(x) = fk(z x) is the sensor likelihood

function;

4) fk+1 k(x w) is the Markov transition density
that models the between-measurements motion of the
target;
5) fk+1 k(x Zk) is the time-prediction of the

posterior fk k(x Zk) to the time-step of the next
measurement zk+1; and
6) K = fk+1(zk+1 Zk) = fk(zk+1 x)fk+1 k(x Zk)dx

is the Bayes normalization factor.
If = fk(z x), fk+1 k(x w), and f0 0(x) are linear

and Gaussian then (1), (2) reduce to the Kalman
time-update and information-update equations [11].

Similarly, the general, theoretically optimal
approach to multisensor-multitarget detection,
tracking, and identification is the following
generalization of the recursive Bayes filter:

fk+1 k(X Z (k)) = fk+1 k(X W)fk k(W Z (k))±W

(3)

fk+1 k+1(X Z (k+1)) = K 1fk+1(Zk+1 X)fk+1 k(X Z (k))

(4)
where
7) X is the multitarget state-set, i.e., the

set of unknown target states (which are also
of unknown number), and has the form X =
Ø, x1 , x1,x2 , : : : , x1, : : : ,xn , : : : where X =Ø means
no target is present, X = x1 means that one target
with state-vector x1 is present, X = x1,x2 means
that two targets with state-vectors x1 = x2 are present,
etc.;
8) Zk is the observation-set consisting of all

measurements collected from all targets by all sensors
at time-step k;
9) fk k(X Z (k)) is the multitarget posterior density

at time-step k, conditioned on the time-sequence
Z (k) : Z1, : : : ,Zk of observation-sets accumulated at
time-step k;
10) LZ ,k(X) = fk(Z X) is the multisensor,

multitarget likelihood function that describes the
likelihood of observing the observation-set Z given
that the targets have multitarget state-set X;
11) fk+1 k(X W) is the multitarget Markov

transition density that describes the likelihood that
the targets will have state-set X at time-step k+1
given that they had state-set W at time-step k (it
models between-measurements multitarget motion,
including individual target motions and appearance
and disappearance of targets);
12) fk+1 k(X Z (k)) is the time-prediction of the

multitarget posterior fk k(X Z (k)) to the time-step of
the next observation-set Zk+1; and
13) K = fk+1(Zk+1 Z (k)) = fk+1(Zk+1 X)fk+1 k
(X Z (k))±X is the Bayes normalization factor.
The multitarget filter equations (3), (4) cannot be

copied from the single-target filter equations (1), (2)
in the blind fashion just indicated but, rather, require
the tools of finite-set statistics (FISST) (see Section II).
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The single-sensor, single-target Bayes filter
is already so computationally demanding that
it must usually be approximated. Consequently,
the multisensor-multitarget Bayes filter will have
no practical utility without drastic but intelligent
approximation strategies. This paper proposes a
multitarget statistical analog of the constant-gain
Kalman filter, i.e., propagation of a multitarget
first-order moment statistic rather than the entire
multitarget posterior itself.

A. First-Order Multitarget Statistical Moments

In single-target problems the two most familiar
statistical moments of the posterior fk k(x Zk) are
the first-moment vector (posterior expectation) and
second-order moment matrix:

xk k = x fk k(x Zk)dx, Ck k = xxT fk k(x Zk)dx

where “T” denotes matrix transpose. If we assume that
the higher-order moment-tensors can be neglected, then
xk k and Ck k are approximate sufficient statistics, i.e.:

fk k(x Zk) = f(x xk k,Ck k) =NPk k (x xk k)

where NPk k (x x̂k k) denotes a multidimensional
Gaussian distribution with covariance matrix Pk k =
Ck k xk k(xk k)

T. In this case we can propagate xk k and
Pk k instead of the full distribution fk k(x Zk), using
a Kalman filter. If we assume that the second-order
moment can be neglected as well, then fk k(x Zk) =
f(x xk k) and we can propagate xk k alone using a
constant-gain Kalman filter (e.g., an ®-¯-° filter):

fk k(x Zk)
time prediction

fk+1 k(x Zk)
Bayes’ rule

fk+1 k+1(x Zk+1)

xk k
predictor

xk+1 k
corrector xk+1 k+1

Here the top row portays the time-evolution of the
single-target Bayes filter equations (1)–(2); the vertical
arrows indicate the collapse of posteriors into their
corresponding expectations; and the bottom row

portrays the time-evolution of the constant-gain
Kalman filter.

Under what sensing conditions can we neglect
higher-order moments? A unimodal likelihood
function Lz,k(x) = fk+1(z x) may be non-Gaussian
(e.g. heavy tails, large skew or kurtosis, etc.), but
if its covariance is small this doesn’t greatly matter
because small-covariance, unimodal distributions all
look much the same. Stated differently: Lz,k(x) is so
highly concentrated around some x that all of the
posteriors fk k(x Zk) constructed from it are similarly
concentrated, and therefore characterized by xk k.

Our goal is to extend this reasoning to multitarget
problems. We assume that some first-order
statistical moment Dk k is an approximate sufficient
statistic—i.e., fk k(X Z(k)) = f(X Dk k)—and then
“fill in the question marks” in the following diagram:

fk k(X Z (k))
time prediction

fk+1 k(X Z (k))
Bayes’ rule

fk+1 k+1(X Z (k+1))

Dk k
predictor?

Dk+1 k
corrector?

Dk+1 k+1

The top row portrays the time-evolution of the
multitarget Bayes filter equations (3), (4); the
downward-pointing arrows indicate the collapse of
multitarget posteriors into their first-order moments;
and the bottom row portrays the evolution of the
approximate first-moment filter.

If either the moments Dk k and Dk+1 k or the
predictor or the corrector are poorly chosen, useful
information will be unnecessarily discarded. First,
information loss in the f D should be minimized.
Second, minimal-loss f D can be fully exploited
only if the predictor is “lossless,” i.e. it produces the
first moment Dk+1 k of fk+1 k as its answer. Third, the
corrector should be similarly lossless. More detailed
discussion is deferred until Section V.

The moment Dk k used here was first proposed in
1993 by M. C. Stein and C. L. Winter [59] and Stein

and R. R. Tenney [60] for group target applications [67]:

DEFINITION 1 (Probability Hypothesis Density)
The PHD is the density Dk k(x Z(k)) whose integral
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S Dk k(x Z (k))dx on any region S of state space is
Nk k(S) = X S fk k(X Z (k))±X , the expected number
of targets contained in S.

This property characterizes the PHD uniquely:
if gk k(x) is any other density function such that

S gk k(x)dx=Nk k(S), it is just the PHD. For, since

S
Dk k(x Z (k))dx= S

gk k(x)dx for all measurable S
then Dk k(x Z(k)) = gk k(x) almost everywhere.
The value Dk k(x Z (k))dx is the expected number

of targets in an infinitesimally small region dx of x,
i.e, Dk k(x Z (k)) is the expected target density at x.
Noting that fk k(X Z (k)) is the probability distribution
of some random state-set ¥k k (Section IIB8),
Dk k(x Z (k)) represents the zero-probability event
Pr(x ¥k k) just as the density fX(x) of a continuous
random vector X represents the zero-probability event
Pr(X= x) (Section IVD3). Consequently, Dk k(x Z (k))
will be multimodal with its peaks located near the
actual target states.

B. Poisson Approximation

If the moments Dk k and Dk+1 k are chosen to be
the PHDs of fk+1 k(X Z(k)) and fk+1 k+1(X Z(k+1)),
respectively, then it will be shown that Dk+1 k
and Dk+1 k+1 are “best fit” approximations of
fk+1 k(X Z (k)) and fk+1 k+1(X Z (k+1)), respectively,
in that Kullback-Leibler information functionals
are minimized (Theorem 4). Also, the predictor
Dk k Dk+1 k will be lossless. The corrector Dk+1 k
Dk+1 k+1 will not be lossless because, to derive a
closed-form formula, we must assume the following:
The predicted multitarget posterior fk+1 k(X Z(k)) is
approximately Poisson (Section IVD2):

fk+1 k(X Z (k)) = e ND(x1) D(xn) (5)

for any X = x1, : : : ,xn with x1, : : : ,xn distinct, where
D(x) =Dk+1 k(x Z (k)) is the PHD of fk+1 k(X Z (k))
and N = D(x)dx.
The conditions under which this approximation

is justifiable resemble those underlying the Kalman
approximation. Both the multisensor-multitarget
likelihood function LZ,k(X) = fk+1(Z X) and the
multitarget posteriors fk k(X Z (k)) will be non-Poisson
in general. But if both sensor covariances and sensor
false alarm densities are small then observations will
be tightly clustered around target states, confusion due
to false alarms will be small, and so the time-evolving
multitarget posteriors will be roughly characterized by
their first-order moments.

C. Simple Example

Two targets on the unitless real-number line are
to be located using a data-scan Z = z1,z2 collected

by a position-measuring sensor. Suppose that the
multitarget posterior is f(X) = 0 unless X = x1,x2 ,
x1 = x2, in which case

f( x1,x2 ) =N¾(x1 z1)N¾(x2 z2)+N¾(x1 z2)N¾(x2 z1)

where N¾(x) is a Gaussian distribution with mean 0
and variance ¾2. If z1,z2 are well separated, f(X) is
maximized near (x1,x2) = (z1,z2) and (x1,x2) = (z2,z1),
i.e., near X = z1,z2 . The PHD of f(X) is

D(x) = f( x,x2 )dx2 =N¾(x z1)+N¾(x z2):

(6)

Expected target number is D(x)dx= 2, and D(x) is
bimodal with maxima near z1 and z2 if z1,z2 are well
separated.

However, it is easily shown that D(x) is unimodal
with maximal value at x= 1

2 (z1 + z2) when z1 z2 <
2¾. The multitarget posterior f( x1,x2 ), on the
other hand, also fails to distinguish two distinct
targets when z1 z2 < 2¾, in which case its unique
maximal value is located at x1 = x2 =

1
2 (z1 + z2) (see

[10, pp. 248–252]). So, for data separations in the
range 2¾ < z1 z2 < 2¾ the multitarget posterior
will separate the two targets whereas the PHD cannot.
Thus a PHD-based multitarget tracker will experience
more difficulty with closely-spaced targets than the
multitarget nonlinear filter, unless ¾ is small compared
with target separation.

The multitarget Poisson density that approximates
f(X) is

g(X) = e 2D(x1) D(xn)

for X = x1, : : : ,xn with x1, : : : ,xn distinct. In general
this does not resemble f(X) except that its expected
target number is 2. If ¾ is small, however, then
g(X) = 0 except near the maxima X = x1, : : : ,xn with
all xi near z1 or z2. Even though g(X) is not uniquely
maximized at X = z1,z2 , like f(X) it is concentrated
near z1 and z2, and so has the same PHD.

D. Summary of Main Results

In this paper we derive recursive Bayes filter
equations for the PHD. First, we time-extrapolate
the old PHD Dk k(x) =Dk k(x Z (k)) to the
PHD Dk+1 k(x) =Dk+1 k(x Z (k)) at the next
measurement-collection step k+1 using the following
predictor equation (Theorem 5, Section VB):

Dk+1 k(x) = bk+1 k(x)

+ (pS(w)fk+1 k(x w)+ bk+1 k(x w))dw:

(7)

Here, fk+1 k(y x) is the single-target Markov transition
density; pS(x) is the probability that a target with
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state x at time-step k will survive into time-step k+1;
bk+1 k(y x) describes the spawning of new targets
from existing ones; and bk+1 k(y) describes the entry
of other new targets.
Suppose now that the targets are interrogated

by a single sensor and that a new observation-scan
Zk+1 has been collected at time-step k+1. Then
Dk+1 k(x) is updated to a new PHD Dk+1 k+1(x) =
Dk+1 k+1(x Z (k+1)) using the following approximate
Bayes corrector equation (Theorem 6, Section VC):

Dk+1 k+1(x) = Fk+1(Zk+1 x)Dk+1 k(x) (8)

where

Fk+1(Z x) =
z Z

pD(x)Lz(x)
¸c(z) +Dk+1 k[pDLz]

+ 1 pD(x)

(9)
and where Dk+1 k[h] = h(x)Dk+1 k(x)dw. Also,
pD(x) is the probability of detection (field of view
(FOV)) of the sensor and Lz(x) = fk+1(z x) is the
sensor likelihood function. It has also been assumed
here that the sensor collects an average of ¸= ¸k+1
Poisson-distributed false alarms per scan, distributed
according to the probability density c(z) = ck+1(z).
Given this, the corrector equation (8) is used to

update Dk+1 k(x) to Dk+1 k+1(x) (Theorem 7, Section
VF):

Dk+1 k(x) = F
[1]
k+1(Z

[1]
k+1 x) F[s]k+1(Z

[s]
k+1 x) (10)

where

F[j]k+1(Z
[j]
k+1 x) =

z[j] Z [j]
k+1

p[j]D (x)L
[j]
z[j] (x)

c̃[j](z[j]) +Dk+1 k[p
[j]
D L

[j]
z[j] ]

+ 1 p[j]D (x) (11)

where Dk+1 k[h] = h(x)Dk+1 k(x)dw, and where Z
[j]
k+1

is the subset of Zk+1 of observations originating with
the jth sensor.

E. Related Approaches and Publications

A short history of the multitarget Bayes filter
(eqns. (3), (4)) can be found in Section IIC. The idea
of using a single-target density function gk k(x) (or
contour maps of its graph) as a basis for multitarget
tracking is a relatively common one. Examples of
implemented algorithms are the Naval Research
Laboratory’s TABS (Tactical Antisubmarine-warfare
Battle-management System) tracker, Metron Corp.’s
Nodestar tracker [61], [62], and the “probabilistic
mapping” multitarget tracking approach of Tao,
Abileah, and Lawrence [63]. Stein, Winter, and
Tenney’s work on the PHD has already been noted.
The work presented here provides a solid

theoretical foundation for single-density approaches.
Mahler showed that the PHD is the first-order moment

of a point process in 1997 [10, pp. 168–170, 179],
with proofs first appearing in [38, 42]. He introduced
the PHD filter in 2000 [38, 42]. (The same year,
Mori suggested the use of Poisson approximations for
multitarget tracking [45].) The proof techniques in this
work, based on probability generating functionals and
functional derivatives (Section III), are more powerful
than those used in earlier papers and first appeared
in [35]. They lead to more general results than those
announced earlier: sensor probabilities of detection
need not be constant. Mahler has proposed the
PHD filter as a potentially computationally tractable
basis for unified group target detection, tracking,
and classification [24, 27], and for cluster tracking
[25, 43].

Because the PHD filter resembles the usual
single-sensor, single-target Bayes filter, it can in
principle be implemented using any computational
nonlinear filtering technique. El-Fellah et al.
[8] describe a PHD filter based on a “spectral
compression” technique. Zajic and Mahler [43, 68,
69], Vo, Doucet et al. [65], and Sidenbladh [52]
describe particle-systems and sequential Monte Carlo
implementations.

F. Organization of the Paper

Section II provides a summary of those aspects of
FISST required to understand this paper. Section III
introduces additional mathematical concepts needed
for the proofs: probability generating functionals
(PGFLs) and their functional derivatives. Section IV
is devoted to the basic concepts of the PHD approach:
multitarget moment densities and verification that
the PHD is a first-order statistical moment. The
Bayes filtering equations for the PHD are derived in
Section V along with an information-theoretic best-fit
characterization of the PHD. Proofs of the theorems
are in Section VI. Conclusions may be found in
Section VII.

II. FINITE SET STATISTICS. A SUMMARY

Progress in single-sensor single-object tracking
has been greatly facilitated by the existence of a
systematic, rigorous, and yet practical engineering
statistics. Until recently multisensor-multitarget
applications have lacked a similar statistical basis,
despite the decades-long existence of the recognized
mathematical foundation for stochastic multiobject
problems, point process theory [3, 7, 17, 50, 54,
56]. This section summarizes finite-set statistics
(FISST), which is in part an “engineering friendly”
formulation of point process theory. That is, it is
geometric (models multiobject systems as visualizable
images) and preserves the “Statistics 101” formalism
that tracking engineers already understand.
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FISST provides a way to directly extend
single-sensor, single-target Bayes statistics to
multisensor-multitarget problems. In Section IIA,
we describe this statistics and, in Section IIB, its
extension to multisensor-multitarget problems is
described. Section IIC provides a short history of
the multitarget Bayes filter, and Section IID describes
relationships between FISST and point process theory
needed later. For futher information regarding FISST,
consult [10, 26, 29, 37].

A. Single-Sensor Single-Target Statistics

1) Single-Sensor Single-Target Modeling: In
single-sensor single-target problems one generally
begins with models

Zk = hk(x) +Wk (12)

Xk+1 k = gk(x) +Vk+1 k (13)

of the sensor observations and presumed motion of
the target. Here, the random vector Wk describes
sensor noise and the random vector Vk provides a
means of hedging against the fact that actual target
dynamics are usually unknown.
2) Single-Sensor Single-Target Measurement and

Markov Densities: A Bayesian analysis requires that
we transform these models into probability density
functions. To do this we must first construct the
probability mass functions

pk(S x) = Pr(Zk S) (14)

pk+1 k(S x) = Pr(Xk+1 k S): (15)

Using techniques of the integral and differential
calculus, we deduce that the true sensor likelihood
function—i.e, the density that faithfully describes
the measurement model—is Lz,k(x) = fk(z x) =
fk(z hk(x)) where fk(z) denotes the density of Wk.
One likewise deduces that the true Markov transition
density—the one that faithfully describes the motion
model—is fk+1 k(y x) = fk+1 k(y gk(x)) where
fk+1 k(y) denotes the density of Vk+1 k. These are
probability densities:

1 = fk(z x)dz, 1 = fk+1 k(y x)dy: (16)

3) Single-Sensor Single-Target State Estimation:
The posterior fk k(x Zk) contains all known
information about the state of the target at time-step k.
This information is unavailable for application without
a Bayes-optimal state estimator [64, pp. 54–58] e.g.,
the maximum a posteriori (MAP) and expected a
posteriori (EAP) estimators:

x̂MAPk k = argsup
x

fk k(x Zk), x̂EAPk k = x fk k(x Zk)dx:

(17)

4) Single-Sensor Single-Target Bayes Filter: We
now have a solid basis for the recursive Bayes filter
equations (1), (2). Without the true sensor likelihood
function or a Bayes-optimal state estimator, any claim
about “Bayes optimality” or having the “true Bayes
posterior” would be hollow or false.

It should also be emphasized that in a Bayesian
approach the unknown state x is a random variable
rather than a fixed parameter. So, (1), (2) describe the
time-evolution

Xk k Xk+1 k Xk+1 k+1 (18)

of the random state-vector of the single-target system,
where the posteriors fk k(x Zk) and fk+1 k(x Zk)
are the probability distributions of Xk k and Xk+1 k,
respectively.

B. Multisensor-Multitarget Statistics

A major purpose of FISST is to extend this
reasoning to multisensor-multitarget problems. This
methodology is employed in the proofs of Theorems 5
and 6.

1) Multitarget State Spaces: Let X denote
single-target state space. In the terminology of [47]
it is a “hybrid space” X= N C (see [10, pp.
135–137, 220]) whose elements are vectors of the
form x= (x1, : : : ,xN ,c) where x1, : : : ,xn are in the
set of real numbers (position, velocity, etc.) and
c belongs to some finite set C (target class, threat
status, etc.). (Note: in this work at least one state
variable must be continuous, N > 0.) Integrals of
real-valued functions f(x) of state variables involve
both summations and continuous integrals. Because
of c, fk(z x) and fk+1 k(x w) can encompass different
measurement and motion models for different target
types. Given this, the state of a multitarget system is
a finite set X = x1, : : : ,xn of state-vectors where n is
the number of targets and x1, : : : ,xn are their individual
states. The multitarget state space is the class of all
finite subsets of X.1 (A complete discussion of the
subtleties of defining multitarget state spaces—sets
versus multisets—is on [10, pp. 194–199].)

2) Multisensor-Multitarget Measurement Spaces:
Suppose that there are s sensors that collect respective
observations z[1], : : : ,z[s] from respective measurement
spaces Z[1], : : : ,Z[s]. Each is a hybrid space Z[j] =
M(j) D[j] j (see [10, p. 220]) consisting of
vectors z= (z1, : : : ,zM ,d,j) where in general M =M(j)

1So that random multitarget states—i.e., random finite
state-sets—can be defined, this class is endowed with the so-called
Mathéron topology (see [10, pp. 131–135]). The same must be
done with the multisensor-multitarget measurement spaces. Further
discussion is beyond the scope of this paper. Also, note that unlike
the multitarget state-space on [61, p. 164], our formulation permits
arbitrarily large target number. Without this feature, the Poisson
approximation of Section VA would be impossible.
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and ¹= ¹(j) will vary with the sensor tag j = 1, : : : ,s.2

Each sensor will collect a finite set Z [j] of individual
observations, and so all sensors will collect a finite set
Z = Z [1] Z [s] of observations. Consequently, one
must bundle all single observation spaces together into
a single “meta-measurement space,” the topological
sum Z= Z[1] Z[s] where denotes disjoint
union (see [20, Definition 24a, p. 159]).3 So, any
multisensor-multitarget “observation” must be some
finite subset Z of Z. The multisensor-multitarget
measurement space is, consequently, the class of finite
subsets of Z.
Moreover, Z can itself be assumed for conceptual

convenience to be a hybrid space ([10, Definition
2, p. 220]) since it is a subset of M D where
M =M(1)+ +M(s) and D = (D[1] D[s])
1, : : : ,s .
3) Multisensor-Multitarget Modeling: By analogy

with the single-sensor single-target case, the analysis
of a multisensor-multitarget problem should begin
with a model

§k = Ek(X) Ck(X) (19)

of the multisensor-multitarget observation and a model

¥k+1 k = Dk(X) Bk(X) (20)

of the presumed motions of the targets. Here,
Ek(X) models the self-noise of the sensors and
their probabilities of detection, whereas Ck(X)
models false alarms and/or clutter. Likewise,
Dk(X) models presumed target motion and the
persistence/disappearance of existing targets, whereas
Bk(X) models the appearance of new targets. (See [29,
pp. 17–23] for more details, as well as Theorems 5
and 6.)
4) Multisensor-Multitarget Measurement and

Markov Densities: In a Bayesian methodology
we must convert these models into their respective
density functions. That is, we need a general,
systematic procedure for constructing the true
multisensor-multitarget measurement density fk(Z X)
that faithfully describes the multisensor-multitarget
measurement model. It is the likelihood that a
multisensor observation-set Z will be collected if
targets with state-set X are present. We likewise need
a general, systematic procedure for constructing the
true multitarget Markov density fk+1 k(Y X), which
faithfully describes the multitarget motion model. This

2Contrary to the assertion of [61, p. 204], such vectors need not be
“contacts” or “detections” but can be vector models of predetection
observations, e.g., vectors whose components are image pixel
intensities, radar range-bin intensities, or acoustic frequency-bin
intensities.
3Again contrary to the assertions of [61, p. 204], it is therefore
absolutely necessary that “all measurements take values in the
same space with a special topology”; and it is not true that FISST
“requires that the measurement spaces be identical for all sensors.”

is the likelihood that the targets will have state-set Y at
time-step k+1 if at time-step k they had state-set X.

Provision of such systematic, general procedures
is a major purpose of the FISST set integral and set
derivative.

5) Set Integral and Multiobject Probability Density
Functions: If f(Y) is any real-valued function of a
finite-set variable Y Y, its set integral4 in a region S
is5

S

f(Y)±Y = f(Ø)+
n=1

1
n! Sn

f( y1, : : : ,yn )dy1 dyn:

(21)

Let ±Y = s
±Y if S = Y. Then f(Y) is a multiobject

probability density function [10, pp. 162–168] if

1 = f(Y)±Y: (22)

If S = Y the nth term of (21) is, for n= 0,1,2, : : : ,
the probability that there are n objects.6 (For more
information on the set integral see [10, pp. 141–144,
159–160] and [29, pp. 28–29].)

Both the likelihood and Markov densities are
multiobject probability density functions [10, pp.
162–168]:

1 = fk(Z X)±Z, 1 = fk+1 k(Y X)±Y:

(23)
6) Set Derivative: The construction of true

multisensor-multitarget measurement densities and
true multitarget Markov densities is made possible by
the inverse operation of the set integral called the set
derivative. Given the measurement model §k = Tk(X)
Ck(X) and motion model ¥k+1 k =Dk(X) Bk(X) we
first construct their belief-mass functions [10, pp.
152–157]:

¯k(S X) = Pr(§k S) =
S

fk(Z X)±Z (24)

¯k+1 k(S X) = Pr(¥k+1 k S) =
S

fk+1 k(Y X)±Y:

(25)

4The set integral can be described in terms of the theory of
measure-theoretic integrals, but such a discussion is beyond the
scope of this paper.
5In these integrals f (x1, : : : ,xn) = f(x1, : : : ,xn) are functions of
n variables rather than of a finite set x1, : : : ,xn , so adopt the
convention f ( x1, : : : ,xi , : : : ,xj , : : : ,xn ) = 0 if xi = xj for some i= j.
If any state variable is continuous such events have probability zero.
(See also Section IIB1.)
6Warning: Set integrals of expressions involving multitarget
probability densities f(X) may be undefined (see [29, pp. 39, 41]
and [10, p. 163]) of [10]). Whereas the units of measurement of
a conventional density function f(x) are constant, the units of
measurement of a multitarget probability density f(X) vary with
the cardinality X of X. Consequently, set integrals like f(X)2±X

and f(X) log f(X)±X can be undefined.
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Then it can be shown [29, pp. 30–31] and [10, pp.
159–161]:

fk(Z X) =
±¯k
±Z
(Ø X) (26)

fk+1 k(Y X) =
±n¯k+1 k

±Y
(Ø X) (27)

where, for arbitrary functions F(Y) of a finite-set
variable Y,

±F

±y
(S) = lim

v(Ey) 0

F(S Ey) F(S)

v(Ey)

±¯

±Y
(S) =

±n¯

±yn ±y1
(S) =

±

±yn

±n 1¯

±yn 1 ±y1
(S)

(28)

are called set derivatives; where Ey is a small
neighborhood of y; and where v(S) is the
hypervolume (i.e., Lebesgue measure) of set S.7

Likewise, multitarget posteriors

fk k(X Z (k)) =
±¯k k
±X

(Ø Z (k)) (29)

can be constructed from their belief mass functions

¯k k(S Z (k)) = Pr(¥k k S) =
S

fk k(X Z (k))±X:

(30)
Set derivatives can be computed using “turn the

crank” rules similar to those of undergraduate calculus
[29, pp. 31–32] and [10, pp. 143, 146, 151]). These
include:
14) Sum rule:

±

±Y
(a1¯1(S) + a2¯2(S)) = a1

±¯1
±Y
(S) + a2

±¯2
±Y
(S):

(31)
15) Product rule:

±

±Y
(¯1(S)¯2(S)) =

W Y

±¯1
±W

(S)
±¯1

±(Y W)
(S): (32)

16) Chain rule:

±

±y
(f(¯1(S), : : : ,¯n(S)) =

n

i=1

@f

@xi
(¯1(S), : : : ,¯n(S))

±¯i
±y
(S):

(33)
17) Constant rule:

If Y =Ø then
±

±Y
K = 0: (34)

18) Power rule: If p(S) is a probability mass
function with density function fp(y) then

±

±Y
p(S)n =

n!
(n k)!

p(S)n kfp(y1) fp(yk) if k n

0 if k > n

:

(35)

7Warning: the first equation (28) has been highly simplified for the
sake of clarity. For further details, see [10, pp. 144–151, 157–162].
The notation ±=±x is a simplified version of a common notation
used in physics (see [51, pp. 173–174] and Section IIIB).

7) Multisensor-Multitarget State Estimation:
Without a Bayes-optimal estimator of the multitarget
state X, the information in fk k(X Z (k)) is not available
for practical use. Surprisingly, the multitarget analogs
of the classical MAP and EAP estimators are not even
defined in general; meaning that alternatives must be
defined and proved optimal.8 Once this has been done
and we have constructed some estimate

X̂k k = x̂1, : : : , x̂n̂ (36)

of the multitarget state, it follows that the conflicting
objectives of detection and estimation have been
unified into a single procedure: both the number
n̂ and states x̂1, : : : , x̂n̂ of targets are determined
simultaneously.9 (For more details, see [30; 34; 29,
pp. 40–44; 10, pp. 188–194, 199–205].)

8) Multisensor-Multitarget Bayes Filter: We now
have a solid basis for the multitarget recursive Bayes
filter, (3), (4) of Section I ([29; 10, pp. 237–239].)
They cannot even be defined without the set integral
±Y. Without the true multisensor-multitarget

likelihood function (i.e., without the set derivative) or
without a Bayes-optimal multitarget state estimator,
any boast about “Bayes optimality” or having the
“true Bayes posterior” would be hollow or false.

It is even more necessary to emphasize that
because our approach is Bayesian, the unknown
multitarget state X is a random variable rather
than a fixed parameter. So, (3), (4) describe the
time-evolution

¥k k ¥k+1 k ¥k+1 k+1 (37)

of the random state-set of the multitarget system,
where fk k(X Z (k)) and fk+1 k(X Z (k)) are the
probability distributions of ¥k k and ¥k+1 k,
respectively.

C. Short History of Multitarget Recursive Bayes
Filtering

The concept of multitarget Bayes filtering (3)
and (4) is a relatively new one. If target number
is assumed known a priori, the earliest exposition
appears to be due to Washburn [66]. When the

8Consequently and contrary to the assertion of [19, p. 123],
because of such difficulties it is not true that “if the target space is
discretized into a collection of cells [then] in the continuous case,
the cell probabilities can be replaced by densities in the usual way.”
General multitarget Bayes statistics is not a blind generalization of
its discrete-space special case.
9Because FISST multitarget state estimation has always addressed
unknown target count, it is not true—contrary to the assertion of
[61, p. 204]—that FISST “does not provide an explicit method for
handling unknown numbers of targets.” Moreover, these authors do
not themselves provide such a method since their multitarget state
estimation procedure specified on [61, pp. 162–163] is erroneous.
Contrary to assertion, the multitarget MAP estimator is not defined
in general; and multitarget means (expectations) apparently cannot
be defined at all.
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number n of targets is not known and must be
determined along with the individual target states, the
earliest work appears to be due to Miller, O’Sullivan,
Srivastava, Lanterman, et al. [23, 57, 58]. Their
“jump diffusion” approach utilizes solution of
stochastic diffusion equations on non-Euclidean
manifolds. It is also apparently the only approach
to systematically deal with continuous evolution
of the multitarget state. (More recently, Lanterman
has adopted a random set perspective for the jump
diffusion approach [22].) Mahler was apparently the
first to systematically deal with the general discrete
state-evolution case (Bethel and Paras [5] assume
discrete observation and state variables). Portenko et
al. used branching-process concepts to model target
appearance and disappearance [49]. Challa et al. [6]
have shown that the IPDA tracking approach arises
directly from the FISST methodology of Sections IIC
through IIE, and have established connections with
its multitarget extension, JIPDA [44]. In recent years
several researchers have implemented equations (3),
(4) using particle-systems, Markov chain, and other
approximations. Representative instances include
Ballantyne, Kouritzin et al. [2], Hue, Le Cadre et
al., [12, 13], and Agate et al. [1]. Sidenbladh and
Wirkander have applied FISST techniques to ground
target tracking [53].
The approach of Stone et al. [61], which

essentially consists of citing the multitarget Bayes
filter equations (3), (4), is best described as heuristic
(see [29, pp. 42, 91–93, footnotes 2, 3, 9], [37, ch. 14,
p. 14–24] and [33, pp. 222–223]).
As is acknowledged on [48, pp. 27–28], Kastella’s

“joint multitarget probabilities (JMP)” approach [18],
and the system-level conceptual apparatus surrounding
it, are elements of FISST core system-level concepts
(e.g. set integrals, multitarget information metrics,
multitarget posteriors, joint multitarget state
estimators, etc.; see [30 and 28, pp. 256–258]). A
JMP itself is just a FISST multitarget posterior density
written in the alternative FISST notation of [10, p.
231: fFISST( x1, : : : ,xn Z) = n!fJMP(x1, : : : ,xn Z)].
Kastella’s “multitarget microdensity” approach [19]
is likewise a restatement of FISST concepts using
random density notation (Section IID1) rather than
random set notation for a simple point process (see
footnote 12). His assertion in the same paper, that
multitarget Bayes filtering requires no “random set
concepts,” is thereby not only false (see Section IIB;
footnote 8; [35, sect. 3.4] and [27, pp. 200–201]) but
self-refuting.

D. FISST and Point Process Theory

This section summarizes point process theory
[3, 7, 17, 50, 54, 56], and its relationship to FISST.
All unreferenced page numbers refer to the textbook

by Daly & Vere-Jones [7]. A fuller discussion is on
[31, pp. 139–146].

1) Point Processes: Let ±w(x) be the Dirac delta
density concentrated at w and 1S(w) the characteristic
function of the set S : 1S(w) = 1 if w S and 1S(w) = 0
otherwise. A point process on a space Y is a random
finite multiset of elements in Y.10 If y1, : : : ,yn are
distinct elements of Y and the positive integers
º1, : : : ,ºn are the respective number of copies of
y1, : : : ,yn then equivalent mathematical formulations
of the concept of a finite multiset are as follows:
19) finite unordered list L =
y1, : : : ,y1, : : : ,yn, : : : ,yn ;
20) density function ±(y) = º1±y(y1) + + ºn±y(yn);
21) measure N(S) = º11S(y1) + + ºn1S(yn) =
L S = S

±(y)dy;
22) finite set of pairs (º1,y1), : : : , (ºn,yn) ;
23) density function ±(º,y) = ±(º,y)(º1,y1) + +

±(º,y)(ºn,yn);
and so on.11 In particular, if it is always the case that
º1 = 1, : : : ,ºn = 1 then the above are all equivalent
mathematical representations of a finite subset of Y.
So, ¥ and N¥ (S) = ¥ S and ±¥(x) = §w ¥±w(x)
are equivalent mathematical representations of
the random finite state-set ¥, a.k.a. a simple point
process.12 The representation ¥ is more suited for
engineering since it is less abstract, represents random
multiobject systems as visualizable images, and
permits the methodology of Sections IIB3 through
IIB7. (However, FISST does encompass multisets, see
[10, pp. 194–199].)

2) Probability Laws of Point Processes:
The statistical behavior of a point process ¤ is
characterized by its family j¤,1(x1),j¤,2(x1,x2), : : : ,
j¤,n(x1, : : : ,xn), : : : of Janossy densities (pp. 122–123).
The Janossy densities of a simple point process
are completely symmetric in all arguments, vanish
whenever xi = xj for some 1 i = j n (Prop. 5.4.IV,

10More precisely, point processes are random locally finite
multisets, but for simplicity’s sake I avoid this complication. Point
processes can also be defined as random variables on unions of
vector spaces [7, p. 121], but this formulation is so restrictive that
it is rarely used.
11See [17, pp. 5, 16, 412] for the equivalence of point processes
and simple point processes of pairs. See [56, pp. 100–102] for the
equivalence of random set, density function, and counting measure
formalisms. See [3, 50] for the equivalence of random set and
random measure formalisms.
12Consequently, the approach of [19] is—contrary to the assertion
on p. TuB-1 that Bayes multitarget filtering can be accomplished
while “requiring no: : :random set concepts to be introduced”—just
FISST rewritten in obfuscated notation. The random “multi-target
microdensity” ½(x) = §w X±w(x) = ±X(x) is a random set in random
density notation. The “probability density functional” on the
microdensity p ½ Y = p §w X±w(x) Y is a FISST multitarget
posterior f(X Y) = f( x1, : : : ,xn Y). “Functional integrals”
are FISST set integrals: p ½ D½= p ±X ±X = p(X)±X.
The “expected value of the target density” is the PHD: ½(x) =
½(x)p ½ D½= ±X (x)p(X)±X =D(x).
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p. 134), and are jointly normalized in the sense that

1 =
n=0

1
n!

j¤,n(x1, : : : ,xn)dx1 dxn

(eqn. 5.4.11, p. 133). So, the FISST multitarget
posterior density fk k(X Z (k)) of a random state-set
¥k k packages the entire family of Janossy densities
of ¥k k into a single function defined on a finite-set
variable:

fk k( x1, : : : ,xn Z (k)) = j¥,n(x1, : : : ,xn): (38)

Assume for ease of discussion that ¤= ¥ is
simple. Then

M¥,1(S) = E[ ¥ S ] =
S

E[±¥(x)]dx (39)

is the expectation measure or first factorial-moment
measure. The expectation density or first factorial-
moment density.

m¥,1(x) = E[±¥(x)] (40)

is its density function. Higher order factorial-moment
densities

m¥,k(x1, : : : ,xk)

=
n=0

1
n!

j¤,k+n(x1, : : : ,xk,w1, : : : ,wn)dw1 dwn

(41)
can also be defined (eqn. 5.4.11, p. 133) and, like
the j¤,1,j¥,2, : : : ,j¥ ,n, : : : vanish when xi = xj for some
1 i = j k.

III. GENERALIZED FISST MULTITARGET CALCULUS

This section summarizes the generalized FISST
multitarget calculus introduced in [31]. The PGFL
(Section IIIA) generalizes the belief-mass function of
(24), (25). The gradient functional derivative (Section
IIIB) generalizes the set derivative of (28). Some of its
properties are derived.

A. Probability Generating Functionals

Given a random finite set ª of objects in some
space Y of such objects and given a measurable subset
S of Y let 1S(y) be the indicator function of S defined
by 1S(y) = 1 if y S and 1S(y) = 0 otherwise. For any
finite subset Y of Y and any real-valued function h(x)
define hY = 1 if Y =Ø and

hY = h(y1) h(yn) (42)

otherwise, if Y = y1, : : : ,yn ) where y1, : : : ,yn are
distinct. Then the belief-mass function ¯ª (S) of
ª , equations (24) and (25), can be rewritten as the
expected value of 1ªS :

¯ª (S) = 1YSfª (Y)±Y: (43)

Generalize ¯ª (S) by replacing 1S(y) with any h(y)
such that h(y) = h0(y) +w1±w1(y) + +wm±wm (y)
where h0(y) has no units of measurement; where
0 h0(y) 1; where ±w(y) is the Dirac delta; where
w1, : : : ,wm are fixed distinct elements of X; and where
w1, : : : ,wm have the same units of measurement as
y. (Note that the definition of h in the earlier paper
[36] is a typo; also the restriction on h0 given here is
slightly different.) Then:

DEFINITION 2 (Probability Generating Functionals)

Gª [h] = hYfª (Y)±Y (44)

is called the PGFL of ª (see [7, pp. 141, 220]). So,
¯ª (S) =Gª [1S].

The PGFL is well defined and finite valued
because fª ( y1, : : : ,yi, : : : ,yj , : : : ,yn ) = 0 whenever
yi = yj for i= j; so undefined products of the form
±u(y)

2 do not occur.
The intuitive meaning of the PGFL is as follows.

Let Y= X be single-target state space, ª = ¥ a
random finite subset of X, and 0 h(x) 1, so that
h(x) can be interpreted as the probability of detection
or FOV of some sensor. Then it can be shown that
G¥ [h] is the probability that ¥ is contained in the
FOV. Since h(x) is also a fuzzy membership function
on X, G¥[h] is a generalization of the belief-mass
function ¯¥(S) =G¥ [1S] from crisp sets S to fuzzy
subsets h.

The PGFL shares the following useful property
with the belief-mass function. Let ¥ = ¥1 ¥N
where ¥1, : : : ,¥N are statistically independent. Let
G1[h], : : : ,GN[h] be the respective PGFLs of the
¥1, : : : ,¥N . Then for all h,

G¥ [h] =G1[h] GN[h]: (45)

B. Functional Derivatives of PGFLs

The gradient derivative (a.k.a. directional or
Frechét derivative) of a real-valued function G(x) in
the direction of a vector w is [15, p. 1075]

@G

@w
(x) = lim

" 0

G(x+ " w) G(x)
"

(46)

where for each x the function w (@G=@w)(x) is
linear and continuous; and so

@G

@w
(x) = w1

@G

@w1
(x) + +wN

@G

@wN
(x)

for all w= (w1, : : : ,wN ), where the derivatives on the
right are ordinary partial derivatives. Likewise, the
gradient derivative of a PGFL G[h] in the direction of
the function g is

@G

@g
[h] = lim

" 0

G[h+ " g] G[h]
"

(47)
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where for each h the functional g (@G=@g)[h] is
linear and continuous. Gradient derivatives obey the
usual “turn the crank” rules of undergraduate calculus,
e.g. sum rule, product rule, etc.

PROPOSITION 1 (Set Derivatives are Functional
Derivatives) The set derivative of ¯¥ (S) is a gradient
derivative of G¥[h]

±¯¥
±x
(S) =

@G¥
@±x

[1S] (48)

with g = ±x and h= 1S . Likewise for the iterated
derivatives:

±¯¥
±X

(S) =
±n¯¥

±x1 ±xn
(S) =

@nG¥
@±x1 @±xn

[1S] (49)

for X = x1, : : : ,xn with x1, : : : ,xn distinct (see Section
VIA).

In physics, gradient derivatives with g = ±x are
called “functional derivatives” [51, pp. 173–174] and
[31, pp. 140–141]. Using the simplified version of
this physics notation used in FISST, we define the
following.

DEFINITION 3 (Functional Derivatives) The
functional derivatives of a PGFL G[h] are

±0G

±x0
[h] =G[h],

±G

±x
[h] =

@G

@±x
[h] (50)

±nG

±x1 ±xn
[h] =

@nG

@±x1 @±xn
[h] (51)

So, the multitarget probability density of random
state-set ¥ is

f¥(X) =
±n¯¥

±x1 ±xn
(Ø) =

±nG¥
±x1 ±xn

[0]: (52)

C. Some Properties of Functional Derivatives

We need the following facts. First, let G[h] = h(x0)
for all h and fixed x0 X. Then from (47) and (50)

±G

±x
[h] = ±x(x0): (53)

for all x. Second, if G[h] = h(x)f(x)dx then likewise

±G

±x
[h] = f(x): (54)

Third, if f(x) is absolutely bounded and G[h] =
G¥ [f h] for all h then (see proof in Section VIB)

±G

±x
[h] = f(x)

±G¥
±x

[f h]: (55)

IV. MULTITARGET MOMENT DENSITIES AND THE
PHD

This section 1) defines the concept of a multitarget
moment density function Dk k(X Z(k)) (Section

IVA), 2) shows how to construct it using the set or
functional derivative (Section IVB), 3) shows that
the first-order multitarget moment Dk k( x Z (k)) is
the PHD (Section IVC), and 4) provides examples of
PHDs (Section IVD). With the exception of the proofs
and examples, this material originally appeared in [10,
pp. 168–170].

A. Multitarget Moment Densities

DEFINITION 4 (Multitarget Moment Densities) Given
a random state-set ¥ with multitarget probability
density f¥(X), its multitarget moment density D¥(X)
is

D¥(X) = f¥(X W)±W (56)

where the rightmost integral is a set integral (Section
IIB5). In particular, if ¥=¥k k and f¥(X)=fk k(X Z(k))
then write

Dk k(X Z(k)) = fk k(X W Z (k))±W: (57)

Here D¥(Ø) =Dk k(Ø Z(k)) = 1 and the set integral
is well defined. That is, D¥ (X W)±W always has
the same units of measurement as X and so there is
no incommensurability of units (footnote 6 of Section
IIB5 or [29, p. 39]). An intuitive interpretation: for
any X = x1, : : : ,xn , D¥(X) is the probability (density)
that n of the targets in ¥ have states x1, : : : ,xn. (See
[7, eqn. 5.4.13, p. 133].)

DEFINITION 5 (Multitarget Moments of Order n) The
functions of n vector variables x1, : : : ,xn

D¥( x1, : : : ,xn ), Dk k( x1, : : : ,xn Z (k)) (58)

are nth-order multitarget moment densities. If ±X(x) =
§w X±w(x) the first multitarget moment is

D¥ ( x ) = f¥( x W)±W = ±X(x)f¥ (X)±X:

(59)

The second of these last two equations is a special
case of Proposition 2a, setting h(x) = ±X(x). Note that
D¥( x1, : : : ,xn ) = 0 when xi = xj for some i = j since
the same convention holds for f¥(X).

B. Computing Multitarget Moments Using Set and
Functional Derivatives

This section proves facts necessary for Theorems 5
and 6.

THEOREM 1 (The Multitarget Moment Density
is a Set Derivative) Let f¥(X) be a multitarget
probability density and let G¥ [h] = hXf¥(X)±X and
¯¥ (S) =G¥[1S] be its PGFL and belief-mass function,
respectively. Then

D¥(X) =
±¯¥
±X

(X) =
±n¯¥

±x1 ±xn
(X) =

±nG¥
±x1 ±xn

[1]

(60)
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where X denotes the entire (single-target) state space. In
particular, the first-moment density is

D¥( x ) =
±¯¥
±x
(X) =

±G¥
±x

[1]: (61)

The proof is in Section VIC.

PROPOSITION 2 Let f(Y) be a multitarget probability
density and G[h] = hYf(Y)±Y its PGFL. Let us be
given a real-valued function h(y) and Y = y1, : : : ,ym
with y1, : : : ,ym distinct. a) Define h(Y) as h(Y) = 0 if
Y = 0 and

h(Y) =
m

i=1

h(yi)

otherwise. Then

h(Y)f(Y)±Y = h(y)
±G

±y
[1]dy: (62)

b) Define h(Y) as h(Y) = 0 if Y 1 and

h(Y) =
1 i=j m

h(yi) h(yj)

otherwise. Then

h(Y)f(Y)±Y = h(y1)h(y2)
±2G

±y1±y2
[1]dy1dy2:

(63)

The proofs are in Sections VID, VIE, respectively.
The next proposition shows how to use functional
derivatives to compute the PHD of a transformed
PGFL (necessary for Theorem 5). A functional
transformation is a mapping © that transforms any
function h into another function ©[h].

PROPOSITION 3 Let h ©[h] be a functional
transformation such that ©[1](x) = 1 identically for all
x. Given a functional G¥[h], define the new functional
G[h] by G[h] =G¥ [©[h]] for all h. Then the PHD of
G[h] is

D(x) = Dw(x)D¥(w)dw (64)

where for each fixed w, ©w is the functional defined by
©w[h] = ©[h](w); and where the PHD of ©w[h] is

Dw(x) =
±ªw
±x

[1]:

The proof can be found in Section VIF.

C. The PHD is a 1st-Order Multitarget Statistical
Moment

This section shows that 1) the multitarget moment
density repackages the point process factorial moment
densities of Section IID2, 2) the first-order multitarget
moment is the PHD, and so 3) the PHD is a first
statistical moment in a mathematically recognized
sense. It also provides an inversion formula for

transforming multitarget moment densities Dkk(X Z(k))
into their multitarget posteriors fk k(X Z (k)).

1) The PHD is the First-Order Multitarget Moment
Density. We begin by proving the equivalence of the
PHD and the first-order multitarget moment density
(eqn. (40)).

THEOREM 2 (The 1st-Order Multitarget Moment is the
PHD) Let ¥k k denote the state-set whose multitarget
distribution is fk k(X Z(k)), and let S be some region of
state space. Then

S

Dk k( x Z (k))dx= E[ ¥k k S ]: (65)

So, the first-order moment equals the PHD almost
everywhere:

Dk k( x Z (k)) =Dk k(x Z (k)): (66)

The proof of the first assertion is in Section
VIG. The second assertion is easy. For by (65) and
Definition 1, S Dk k( x Z (k))dx= S Dk k(x Z (k))dx
for all measurable S and so Dk k( x Z (k)) =
Dk tk(x Z (k)) almost everywhere.

2) The PHD is the First-Order Multitarget
Statistical Moment. Notice that D¥(X) repackages
the family of point process factorial moment densities
((41) of Section IID2) into a single function of a
finite-set variable:

D¥( x1, : : : ,xk ) = f¥(X W)±W

=
n=0

1
n!

f¥( x1, : : : ,xk w1, : : : ,wn )dw1 dwn

=
n=0

1
n!

j¥,k+n(x1, : : : ,xk,w1, : : : ,wn)dw1 dwn

=m¥,k(x1, : : : ,xk): (67)

In other words, from the point of view of point
process theory the Dk k( x1, : : : ,xn Z (k)) are standard
statistical moments of the random state-set ¥k k . In
particular the PHD is a first-order moment statistic in
a well-understood mathematical sense.

Engineers tend to react with puzzlement to the idea
that the first-order moment of a multitarget posterior
is a density function, expecting instead to see some set
X = x1, : : : ,xn of state vectors.13 The mystery is due
to the fact that the set integral X fk+1 k(X Z (k))±X
required to define a conventional expectation does
not exist because the class of finite sets is not even
a vector space [29, p. 41]. As a result, one has
no choice but to construct a multitarget moment
indirectly.

13The problem of defining a set-valued multitarget first moment is
unsolved (see [13, pp. 153–154] for a fuller discussion).
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That is, first specify some function µ that
transforms state-sets X = x1, : : : ,xn into elements
µ(X) of a suitably well-behaved vector space, and
which also preserves additive set-theoretic structure:
µ(X Y) = µ(X) + µ(Y) whenever X Y = Ø (see [10,
p. 179]). Then µ(X)fk+1 k(X Z (k))±X is an indirect
first-order expectation. The PHD arises from the
specific choice µ(X) = ±X where ±X(x) = ±x1 (x) + +
±xn(x).
3) Inversion Formula for Multitarget Moments.

The multitarget moment density is defined in terms of
the multitarget posterior. Conversely, the multitarget
posterior can be recovered from the multitarget
moment density.

THEOREM 3 (Inversion Formula)

D¥(X) = ( 1) W D¥(X W)±W: (68)

The proof is in Section VIH.

D. Examples of PHDs and PGFLs

This section computes the PHD and PGFL of a
multitarget Poisson density (Section IVD1) and of
a random state-set (Section IVD2); and shows that
the PHD is a fuzzy subset of discrete state spaces X
(Section IVD3).
1) Example 1 (Computing PHD and PGFL of

a Random State-Set). This example is required
for the proofs of Theorems 5 and 6. Suppose that
we know that a) there are n random track vectors
X1, : : : ,Xn, b) the probability distribution of the ith
track Xi is fi(x), and c) there is a probability 1 ¼i
that the ith track may not exist. Then the random
state-set is ¥ = ¥1 ¥n where ¥i = Xi Øi and
where Øi is a random subset of state space X such
that Øi =Ø with probability 1 ¼i and Øi = X with
probability ¼i. Consequently ¥i =Ø (no target) with
probability 1 ¼i and, otherwise, ¥i = Xi (one target
with state Xi) with probability ¼i. Assume that the
X1, : : : ,Xn,Ø1, : : : ,Øn are statistically independent.
Then:

PROPOSITION 4 (PHD and PGFL of a Random
State-Set) The belief-mass function, PHD, and PGFL
of X are

¯¥(S) = (1 ¼1 +¼1p1(S)) (1 ¼n+¼npn(S))

(69)

D¥ (x) = ¼1f1(x) + + ¼nfn(x) (70)

G¥ [h] = (1 ¼1 +¼1p1[h]) (1 ¼n+¼npn[h])

(71)

where pi[h] = h(x)fi(x)dx and pi(S) = pi[1S].

To see this, first note that the belief-mass function
of ¥i is

¯i(S) = Pr(¥i S) = Pr(¥i =Ø)+Pr(¥i =Ø,Xi S)

= Pr(¥i =Ø)+Pr(¥i = Ø)Pr(Xi S)

= 1 ¼i+¼ipi(S):

So, the belief-mass function of ¥ is

¯¥ (S) = Pr(¥1 ¥n S) = Pr(¥1 S) Pr(¥n S)

= (1 ¼1 + ¼1p1(S)) (1 ¼n+ ¼npn(S)):

From the “turn the crank” formulas for the FISST
calculus (Section IIB6) the first set derivative of ¯¥(S)
is

±¯¥
±x
(S) =

n

i=1

¯1(S) ¼ifi(x) ¯i(S):

Substitute S = X and use Theorem 1 and ¯i(X) = 1:

D¥(x) = ¼1f1(x) + +¼nfn(x):

The expected number of targets is therefore

N¥ = D¥ (x)dx= ¼1 + +¼n:

It is n if and only if ¼i = 1 for all i, i.e., if and only if
all targets are known to exist with certainty.

Finally, from (29) and the “turn the crank” rules
for the set derivative it is easy to show that the
multitarget distribution of ¥i is fi(X) = 0 if X 2
and, otherwise, fi(Ø) = 1 ¼i and fi( x ) = ¼ifi(x). So,
the PGFL of ¥i is

Gi[h] = hXfi(X)±X = fi(Ø)+ h(x)fi( x )dx

= 1 ¼i+ ¼i h(x)fi(x)dx= 1 ¼i+ ¼ipi[h]:

So, the PGFL of ¥ is

G¥ [h] =G1[h] Gn[h]

= (1 ¼1 +¼1p1[h]) (1 ¼n+¼npn[h]):

2) Example 2 (PHD and PGFL of Multitarget
Poisson Distributions). A multitarget density fI(X)
is Poisson if

fI(X) = e
¸I(x1) I(xn) (72)

for any X = x1, : : : ,xn with x1, : : : ,xn distinct, where
I(x) is a density function (the “intensity”) and ¸=
I(x)dx (the “parameter”). (See [7, eqn. 7.4.10, p.

225].)
The following establishes some basic properties

of multitarget Poisson distributions required for
Theorem 6.

PROPOSITION 5 Let fI(X) be a multitarget Poisson
density with intensity I(x) and parameter ¸. Then
a) fI(X)±X = 1, b) the multitarget moment density

1164 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 39, NO. 4 OCTOBER 2003



of fI(X) is DI( x1, : : : ,xn ) = I(x1) I(xn), and c)
the PGFL of fI(X) is GI[h] = e

I[h] ¸ where I[h] =
h(x)I(x)dx.

The proof of these assertions is in Section VII. In
particular, the first multitarget moment of a multitarget
Poisson distribution—its PHD—is just its intensity
function: DI( x ) = I(x). In other words, a multitarget
Poisson distribution and its PHD contain exactly the
same information.
For Proposition 5a, fI(X) is a multitarget

probability density because

fI(X)±X =
n=0

1
n!

fI( x1, : : : ,xn )dx1 dxn

= e ¸

n=0

1
n!

I(x1) I(xn)dx1 dxn

= e ¸

n=0

¸n

n!
= e ¸e¸ = 1:

For Proposition 5b, the multitarget moment density of
fI(X) is

DI(X) = fI(X W)±W

=
i=0

1
i!

fI( x1, : : : ,xn,w1, : : : ,wi )dx1 dxi

= e ¸I(x1) I(xn)
i=0

1
i!

I(w1) I(wi)dw1 dwi

= I(x1) I(xn):

For Proposition 5c, the PGFL of fI(X) is

GI[h] =
n=0

1
i!

n

i=1

h(xi) fI( x1, : : : ,xn )dx1 dxn

= e ¸

n=0

1
n!

h(x1) h(xn)

I(x1) I(xn)dx1 dxn

= e ¸

n=0

1
n!

h(x)I(x)dx
n

= exp( ¸+ h(x)I(x)dx):

3) Example 3 (PHD When State Space is Discrete).
Suppose that X is a finite set of target-state cells x. Let
¥ be a random state-set and note that f¥ (X) =
Pr(¥ = X). Then:

D¥ (x) =
X x

Pr(¥ = X)

=
X

Pr(x X,¥ = X) = Pr(x ¥): (73)

This result demonstrates that when X is discrete the
PHD is: 1) I. R. Goodman’s one-point covering
function ¹¥(x) = Pr(x ¥) of the random set ¥ [9],
and 2) a fuzzy subset of X since ¹¥(x) is a fuzzy
membership function on X. So, for continuous X the
PHD represents the zero-probability event Pr(x ¥)
just as the density fX(x) of a continuous random
vector X represents Pr(X= x).

V. PHD FILTER EQUATIONS

The purpose of this section is to derive equations
for the “predictor” and “corrector” steps of a recursive
filter for the PHD, as indicated in the following
diagram

fk k(X Z (k))
time prediction

fk+1 k(X Z (k))
Bayes’ rule

fk+1 k+1(X Z (k+1))

Dk k
predictor?

Dk+1 k
corrector?

Dk+1 k+1

where the top row portrays the the multitarget Bayes
filter, the downward-pointing arrows indicate the
collapse of multitarget posteriors into their PHDs,
and the bottom row portrays the to-be-determined
approximate filter for PHDs. As noted in Section
IA, the approximate filter should have the following
properties.14 For any k,
24) the predictor Dk k(x) Dk+1 k(x) is lossless: if

Dk k(x) =Dk k(x Z(k)) then Dk+1 k(x) =Dk+1 k(x Z (k));
25) the corrector Dk+1 k(x) Dk+1 k+1(x) is lossless:

if Dk+1 k(x) =Dk+1 k(x Z (k)) then Dk+1 k+1(x) =
Dk+1 k+1(x Z (k+1)); and
26) Dk k(x Z (k)) and Dk+1 k(x Z (k)) are “best-fit”

approximations of fk k(X Z (k)) and fk+1 k(X Z (k)),
respectively.

We will be able to derive a information-lossless
predictor (Theorem 5) and we will be able to
show that PHDs are best-fit approximations of
their corresponding multitarget posteriors in
an information-theoretic sense (Theorem 4).

14An approximate filter that satisfies these three conditions is
“Bayes-closed” in the terminology of Kulhavý [21] and Iltis [14].
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Unfortunately, the corrector equations we derive
(Theorems 6 and 7) will only be approximate and
therefore not lossless.
The section is organized as follows. Section VA

proves a “best fit” approximation characterization
of the PHD. Section VB is devoted to the PHD
predictor equation and Section VC to the PHD
corrector equation in the single-sensor case. The
corrector equation for the multisensor case requires
further approximation. As explained in Section
VD, this is because the Poisson assumption used
in the single-sensor case results in a multisensor
corrector equation too complex to be tractable.
To get a tractable equation we must use an
additional approximation, explained in Section
VE, which models the entire sensor suite as a
single “pseudosensor.” This leads, in Section VF,
to an approximate PHD corrector equation for the
multisensor case.

A. Best Poisson Approximation of Multitarget Posterior

Suppose that D(x) =Dk k(x Z (k)) is the PHD of
the multitarget posterior distribution fk k(X Z(k)), and
let fD(X) be the multitarget Poisson density whose
intensity is also D(x) (72). The following shows that
the multitarget Poisson distribution that has the closest
fit to fk k(X Z (k)), in an information-theoretic sense,15

is just fD(X). It is based on the concept of multitarget
Kullback-Leibler discrimination [40; 10, pp. 205–209,
297–303], i.e., the PHD of a multitarget posterior is
the least lossy collapse of the multitarget posterior to a
density function on single-target state space.

THEOREM 4 (Best Poisson Approximation) Let
fk k(X) = fk k(X Z (k)) be a multitarget posterior
distribution and let fI(X) be a multitarget Poisson
density with intensity-function I(x). Then the multitarget
Kullback-Leibler discrimination

K(I) = fk k(X) log
fk k(X)

fI(X)
±X (74)

is minimized if and only if I(x) = Dk k(x Z (k)).

The proof is in Section VII and [35, p. 161].

15In [46] it was proposed that the Poisson best-fit approximation be
that I = I that minimizes the multitarget square-error

"(I)2 = (fk k(X) fi(X))
2±X:

However, the indicated set integral is ill defined because of the
incommensurability of units of measurement problem (see footnote
6 of Section IIB5). Contrary to the last sentence of [46, Sect.
3.3], normalization with respect to a fixed reference unit does not
resolve this difficulty since the solution of the optimization problem
I = arg infI "(I)

2 will then depend on the choice of reference unit.

B. Recursive Time-Update of PHD

The purpose of this section is to derive an equation
for the prediction Dk k(x Z (k)) Dk+1 k(x Z (k)) of the
PHD to the time of the next observation-collection.
Because of Theorem 2 and Definition 4 we know that

Dk k(x Z (k)) = fk k( x W Z (k))±W

Dk+1 k(x Z (k)) = fk+1 k( x W Z(k))±W:

We need an equation for the predictor Dk k(x)
Dk+1 k(x) such that Dk+1 k(x) = Dk+1 k(x Z (k)) if
Dk k(x) =Dk k(x Z(k)). This is achieved as follows.
First, show that the PGFL Gk+1 k[h] of fk+1 k(X Z (k))
is a transformation Gk+1 k[h] = eh Gk k[©[h]] of the
PGFL of fk k(X Z (k)). Second, get a formula for
Dk+1 k(x Z (k)) in terms of Dk k(x Z (k)) by taking a
functional derivative ±=±x of this equation.

We begin by specifying notation and assumptions
regarding between-measurements multitarget motion:
27) Motion of individual targets: fk+1 k(y x) is the

single-target Markov transition density;
28) Disappearance of existing targets: pS,k+1 k(x)

is the probability that a target with state x at time-step
k will survive in time-step k+1, hereafter abbreviated
as pS(x);
29) Spawning of new targets by existing targets:

bk+1 k(Y x) is the likelihood that a group of new
targets with state-set Y will be spawned at time-step
k+1 by a single target that had state x at time-step k,
and its PHD is denoted by bk+1 k(y x) = bk+1 k( y
W x)±W;
30) Appearance of completely new targets:

bk+1 k(Y) is the likelihood that new targets with
state-set Y will enter the scene at time-step k+1, and
bk+1 k(y) = bk+1 k( y W)±W is its PHD.

Now, apply the methodology of Sections, IIB3,
IIB4, and IIB5. To determine the multitarget Markov
transition density fk+1 k(Y X) we must first specify
a multitarget motion model, i.e., a formula for the
predicted random state-set ¥k+1 k in terms of the
previous multitarget state-set X = x1, : : : ,xk at
time-step k. Assume that

¥k+1 k = ¥(X) ª (X) ª0

where
¥(X) = ¥(x1) ¥(xn)

is the set of surviving targets, where

ª (X) =ª (x1) ª(xn)

is the set of spawned targets, and where ª0 is the
set of entering targets. Here, ¥(x) = Ø (target
disappearance) with probability 1 pS(x) and ¥(x)
= Y(x) with probability pS(x), where Y(x) is a
random vector whose distribution is fk+1 k(y x).
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The multitarget distributions of ª(x) and ª0 are
bk+1 k(Y x) and bk+1 k(Y), respectively. Further,
assume that
31) ¥(x1), : : : ,¥(xn), ª(x1), : : : ,ª (xn), ª0 are

statistically independent, i.e., between-measurements
target motions are independent when conditioned on
the previous state X .
Then:

THEOREM 5 (General Law of Motion for PHDs)
Abbreviate Dk+1 k(x) =Dk+1 k(x Z (k)) and Dk k(x) =
Dk k(x Z (k)). Then the predictor equation for the
PHD is

Dk+1 k(x) = bk+1 k(x) + (pS(w)fk+1 k(x w)

+ bk+1 k(x w))Dk k(w)dw: (75)

This result is proved in Section VIJ.16 As already
noted, it is based on taking a functional derivative of
the equation

Gk+1 k[h] = eh Gk k[©[h]] (76)

where we show that

©[h] = (1 pS +pSph)bh (77)

ph(x) = h(x)fk+1 k(w x)dw (78)

where

bh(x) = hXbk+1 k(X x)±X (79)

eh = hXbk+1 k(X)±X (80)

are the PGFLs of bk+1 k(X x) and bk+1 k(X),
respectively.
Now, let Nk k = Dk k(x Z (k))dx be the expected

number of targets at time-step k. From Theorem 5, the
expected number Nk+1 k = Dk+1 k(x Z(k))dx of targets
at the next time-step is

Nk+1 k = Bk+1 k + (pS(w) +Bk+1 k(w))Dk k(w)dw

(81)
where Bk+1 k(w) = bk+1 k(x w)dx is the expected
number of targets spawned at time-step k+1 by a
target that had state w at time-step k; and Bk+1 k =
bk+1 k(x)dx is the expected number of new targets

entering at time-step k+1.
The following is a special case of (75) that

employs a Poisson model to account for new targets.

COROLLARY 1 (Law of Motion for PHDs Assuming
Poisson Target Births) Suppose that the multitarget
density functions bk+1 k(X x) and bk+1 k(X) are

16Theorem 5 is easily extended to the higher order multitarget
moments. Specifically, predict Dk k( x1, : : : ,xn Z(k)) to

Dk+1 k( x1, : : : ,xn Z(k)) by applying Theorem 5 to each of its
arguments x1, : : : ,xn in turn.

Poisson:

bk+1 k(X w) = exp( ¹k+1 k(w))¦x X¹k+1 k(w)sk+1 k(x w)

bk+1 k(X) = exp( ¹k+1 k)¦x X¹k+1 ksk+1 k(x)

where ¹k+1 k(w) 0, ¹k+1 k 0, and sk+1 k(x w) and
sk+1 k(x) are probability densities. Then:

Dk+1 k(x) = ¹k+1 ksk+1 k(x) + (pS(w)fk+1 k(x w)

+¹k+1 k(w)sk+1 k(x w))Dk k(w)dw (82)
and

Nk+1 k = ¸k+1 k + (pS(w) +¹k+1 k(w))Dk k(w)dw:

(83)

This formula follows immediately since the PHD
of a Poisson distribution bk+1 k(X w) is its intensity
bk+1 k(x w) = ¹k+1 k(w)sk+1 k(x w)); and likewise
the PHD of bk+1 k(X) is its intensity bk+1 k(x) =
¹k+1 ksk+1 k(x) (Proposition 5). Finally:

COROLLARY 2 (Simplest Law of Motion for PHDs)
Suppose that there are no target appearances
(bk+1 k(Y x) = bk+1 k(Y) = 0) or disappearances
(pS(w) = 1). Then

Dk+1 k(x) = fk+1 k(x w)Dk k(w)dw (84)

Nk+1 k =Nk k: (85)

That is, if target number does not change between
measurement collections then the time-evolution of the
PHD is governed by the same law of motion as that
which governs the between-measurements time-evolution
of the posterior density of any single target in the
multitarget system.

C. Single-Sensor Bayes-Update of PHD

The purpose of this section is to derive an
equation for the PHD corrector Dk+1 k(x Z (k))
Dk+1 k+1(x Z (k+1)). Because of (56) of Definition 4

Dk+1 k(x Z (k)) = fk+1 k( x W Z(k))±W

Dk+1 k+1(x Z (k+1)) = fk+1 k+1( x W Z (k+1))±W:

We would like to find an equation for the corrector
Dk+1 k(x) Dk+1 k+1(x) such that Dk+1 k+1(x) =
Dk+1 k+1(x Z (k+1)) if Dk+1 k(x) =Dk+1 k(x Z (k)).
This is not possible because the formula for
fk+1 k+1(X Z(k+1)) is too complicated to permit
closed-form formulas if fk+1 k(X Z(k)) is arbitrary.
To get around this assume that fk+1 k(X Z (k)) is
approximately Poisson.

We begin by specifying notation and assumptions:
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32) Single-target measurement-generation:
Lk+1,z(x) = fk+1(z x) is the sensor likelihood function,
hereafter abbreviated as Lz(x);
33) Probability of detection (sensor FOV):

pD,k+1(x,x ) is the probability that an observation will
be collected at time-step k+1 from a target with state
x if the sensor has state x at that time-step, hereafter
abbreviated as pD(x);
34) Poisson false alarms: at time-step k+1

the sensor collects an average number ¸k+1(x )
of Poisson-distributed false alarms whose spatial
distribution is the probability density ck+1(z x ), and
these are hereafter abbreviated as ¸ and c(z).
Now apply the methodology described in Sections

IIB3, IIB4, IIB5. Let X = x1, : : : ,xk be the state-set
of the multitarget system at time-step k+1. Then the
random observation-set § collected from these targets
has the form

§k+1 = §(x1) §(xn) £

where §(xi) is the observation-set produced by the
target with state xi; and where £ is the Poisson false
alarm process. Specifically, §(x) = Ø (no observation)
with probability 1 pD(x) and §(x) = Z(x) with
probability pD(x), where Z(x) is a random vector
whose distribution is fk+1(z x). Because £ is Poisson,
by Proposition 5c its PGFL is G£[g] = e

¸c[g] ¸ where
c[g] = g(z)c(z)dz. It is also assumed that:
35) §(x1), : : : ,§(xn),£ are independent, i.e.,

observations are independent conditionally on the
multitarget state X. Then:

THEOREM 6 (Single-Sensor Bayes Update Formula for
PHD) Let Zk+1 = z1, : : : ,zk+1 and abbreviate

Dk+1 k(x) =Dk+1 k(x Z (k))

Dk+1 k+1(x) =Dk+1 k+1(x Z (k+1))

Dk+1 k[h] = h(x)Dk+1 k(x)dx:

Assume that fk+1 k(X Z (k)) is approximately Poisson,
i.e.

fk+1 k(X Z(k)) = e ¹¹ns(x1) s(xn) (86)

for some ¹ 0 and probability density s(x), in
which case Dk+1 k(x Z (k)) = ¹ s(x) where s[h] =
h(x)s(x)dx. Then the PHD approximate Bayes

corrector equation is

Dk+1 k+1(x) = Fk+1(Zk+1 x)Dk+1 k(x) (87)

where

Fk+1(Z x) =
z Zk+1

pD(x)Lz(x)
¸c(z) +Dk+1 k[pDLz]

+ 1 pD(x):

(88)

This result is proved in Section VIK. It is based
on the following construction. By Proposition 5c

the assumption that fk+1 k(X Z (k)) is approximately
Poisson can be restated as

Gk+1 k[h] = e
¹s[h] ¹: (89)

Define the two-variable PGFL F[g,h] as

F[g,h] = hXgZfk+1(Z X)fk+1 k(X Z (k))±X±Z:

(90)
Then it will be shown that

F[g,h] = e¸c[g] ¸Gk+1 k[©[g,h]] (91)

where

©[g,h] = (1 pD +pDpg)h (92)

pg(x) = g(z)fk+1(z x)dz: (93)

The data-updated PHD is derived by noting that the
denominator of Bayes’ rule

fk+1 k+1(X Z (k+1)) =
fk+1(Zk+1 X)fk+1 k(X Z (k))

fk+1(Zk+1 Z (k))
(94)

can be expressed as iterated functional derivatives of
F[g,1], whereas its numerator can be expressed as
iterated functional derivatives of

±F

±x
[g,1]:

Consider now two special cases. The first,
Corollary 3, is the result reported in earlier papers
[31, 38, 42, 43].17

COROLLARY 3 (PHD Data-Update for Constant
Probability of Detection) Suppose that the sensor has
an infinite FOV, i.e. pD(x) = pD is constant. Then:

Dk+1 k+1(x) = Fk+1(Zk+1 x)Dk+1 k(x) (95)

where

Fk+1(Z x) =
z Zk+1

pDLz(x)
¸c(z) +pDDk+1 k[Lz]

+1 pD:

(96)
Also, the expected number of targets is, approximately,

Nk+1 k+1 =
z Z

pDDk+1 k[Lz]

¸c(z) +pDDk+1 k[Lz]
+ (1 pD)Nk+1 k:

(97)

COROLLARY 4 (PHD Data-Update for No Missed
Detections and No False Alarms) Suppose that
pD(x) = 1 and ¸k+1 = 0. Then (87) becomes

Dk+1k+1(x) =
z Zk+1

Dk+1 k+1(x z) (98)

17ERRATUM: In the papers [8, 24, 31, 38, 42], the second term of
(96) was erroneously reported to have the factor (1 pD)=(1 (1
pD)Nk+1 k). The correct factor is 1 pD . Also the requirement that

pD > 1 N 1
k+1 k is no longer necessary.
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where

Dk+1 k+1(x z) =
pD(x)Lz(x)
Dk+1 k[pDLz]

Dk+1 k(x) (99)

is a Bayes’ rule-like update of Dk+1 k(x) using z.

Note (“Weak Evidence Accrual”): If we write
Zk+1 = z1, : : : ,zm then (95) can be rewritten as

Dk+1 1k+1(x) = ®0Dk+1 k(x) +
m

i=1

®iDk+1 k+1(x zi)

(100)

for nonnegative weights ®0,®1, : : : ,®m. This additive
property is essentially what Stein, Winter, and Tenney
called Weak Evidence Accrual (WEA) [59, 60].
WEA thus is a linearizing side-effect of collapsing
a multitarget posterior into its PHD, rather than an
explicit evidence accrual method.

D. Difficulties With the Multisensor Case

This section shows why the single-sensor PHD
corrector cannot be immediately generalized to the
multisensor case.
Suppose that at time-step k+1 there are s sensors

with respective state variables x [1], : : : ,x [s] that collect
respective conditionally independent observations
z[1], : : : ,z[s] from respective observation spaces
Z[1], : : : ,Z[s]. Assume the following abbreviations.
First, likelihood functions:

L[1]
z[1]
(x) = f[1]k (z[1] x,x [1]), : : : ,L[s]z[s] (x) = f

[s]
k (z

[s] x,x [s]):

(101)
Second, probabilities of detection (FOVs):

p[1]D (x) = p
1]
D (x,x

[1]), : : : ,p[s]D (x) = p
[s]
D (x,x

[s]):

(102)
Third, average numbers of false alarms:

¸[1] = ¸[1]k+1, : : : ,¸
[s] = ¸[s]k+1: (103)

Fourth, false alarm spatial distributions:

c[1](z[1]) = c[1]k+1(z
[1]), : : : ,c[s](z[s]) = c[s]k+1(z

[s]):

(104)
Assume now that the predicted multitarget

posterior fk+1 k(X Z(k)) is approximately Poisson.
Then mathematical complexities prevent equ. (87)
from being extended to the multisensor case. For
example, in the two-sensor case the analog of the
PGFL in (90) is

F[g1,g2,h] = hXgZ
[1]

1 gZ
[2]

2 f[1]k+1(Z
[1] X)f[2]k+1(Z

[2] X)

fk+1 k(X Z (k))±X±Z [1]±Z [2]

which reduces to

F[g1,g2,h] = e
¸[1]c[1][g1] ¸[1] e¸

[2]c[2][g2] ¸[2]

Gk+1 k[ª [g1,g2:h]]

where

ª[g1,g2,h] = (1 p[1]D +p[1]D p
[1]
g1
)(1 p[2]D +p[2]D p

[2]
g2
)h

p[1]g1 (x) = g1(z
[1])f[1]k+1(z

[1] x)dz[1]

p[2]g2 (x) = g2(z
[2])f[2]k+1(z

[2] x)dz[2]

c[1][g1] = g1(z
[1])c[1](z[1])dz[1]

c[2][g2] = g2(z
[2])c[1](z[2])dz[2]:

Even with the Poisson assumption Gk+1 k[h] = e
¹s[h] ¹

the resulting formula for Dk+1 k+1(x Z (k+1)) is
impractical because of the quadratic dependence on
g1 and g2 in F[g1,g2,h].

One way out of this difficulty, proposed in [31,
38, 42], is as follows. Abbreviate Z [j] = Z [j]k+1 for
all j = 1, : : : ,s. Assuming that fk+1 k(X Z (k)) is
approximately Poisson, update it with Z [1] to get
fk+1 k+1(X Z(k),Z [1]). Assume that this posterior is
also approximately Poisson, and update it with Z [2]

to get fk+1 k+1(X Z(k),Z [1],Z [2]). And so on, until we
get fk+1 k+1(X Z (k)). This (s+1)-fold application of
the Poisson approximation is rather drastic. A weaker
approximation would be desirable.

ERRATUM: In an ill-advised attempt at a less
drastic approximation for the multisensor case, in
recent conference papers [35, 41] we proposed a
“pseudo-sensor approximation.” This approximation is
incorrect because, assuming it, single targets generate
multiple rather than single observations, in violation
of the measurement model assumed earlier.

E. Multisensor Bayes Update of PHD

Given this, Theorem 6 generalizes as follows.

THEOREM 7 (Multisensor Bayes-Update Formula for
PHD) Let the next multisensor observation-set Zk+1 be

Zk+1 = Z
[1]
k+1 Z [s]k+1: (105)

Then the data-updated PHD is, approximately,

Dk+1 k(x) = F
[1]
k+1(Z

[1]
k+1 x) F[s]k+1(Z

[s]
k+1 x) (106)

where

F[j]k+1(Z
[j]
k+1 x) =

z[j] Z[j]
k+1

p[j]D (x)L
[j]
z[j] (x)

c̃[j](z[j]) +Dk+1 k[p
[j]
D L

[j]
z[j] ]

+ 1 p[j]D (x) (107)

where the various quantities are as defined in Section
VE.
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This result results from substitution into equ. (87).

VI. MATHEMATICAL PROOFS

A. Proof of Proposition 1 (The Set Derivative is a
Functional Derivative)

The gradient derivative of G¥[h] is by equ.’s (44)
and (47)

@G¥
@g

[h] =
@

@g
hX f¥ (X)±X

where the product rule and (47) leads to

@

@g
hX =

@

@g
h(x1) h(xn)

=
n

i=1

h(x1)
@

@g
h(xi) h(xn)

=
n

i=1

h(x1) g(xi) h(xn) (108)

for X = x1, : : : ,xn . Notice that 1S(x) =¢x(S) where
¢x(S) is the Dirac probability measure defined by
¢x(S) = 1 if x S and ¢x(S) = 0 if otherwise. Also
notice that since the set derivative of any probability
measure p(S) is its corresponding density function
f(x), the set derivative of ¢x(S) is the Dirac delta
function ±x(y). Now, the set derivative of ¯¥ (S) is

±¯¥
±x
(S) =

±

±x
1XS f¥ (X)±X (109)

where from the product rule for set derivatives
(Section IIB7)

±

±x
1XS =

±

±x
¢x1 (S) ¢xn(S)

=
n

i=1

¢x1 (S)
±

±x
¢xi(S) ¢xn(S)

=
n

i=1

1S(x1) ±xi(x) 1S(xn):

So, the claimed relationship immediately follows by
substituting g = ±x and h= 1S into (115).

B. Proof of Equation (55)

From (46) and (50), if f(x) = 0 then the result is
trivial; if f(x)> 0:

±G

±x
[h] = lim

" 0

G¥[f h+ " f ±x] G¥[f h]
"

= f(x) lim
" 0

G¥[f h+ " f(x) ±x] G¥ [f h]
" f(x)

= f(x)
±G¥
±x

[f h]:

C. Proof of Theorem 1 (Computing Multitarget
Moments Using Set and Functional Derivatives)

This was originally proved on [38, pp. 113–
114]. Here we give a simpler proof based on
functional derivatives. From Proposition 1 we
know that

±¯¥
±X

(S) =
±nG¥

±x1 ±xn
[1S]

for all S and all X = x1, : : : ,xn . So, it is enough to
show that

±nG¥
±x1 ±xn

[1] =D¥( x1, : : : ,xn ):

First note that, differentiating under the integral
sign,

±nG¥
±x1 ±xn

[h] =
±n

±x1 ±xn
hX f¥ (X)±X:

Now, for each fixed X = y1, : : : ,yn

±

±x1
hX =

n

i=1

h(y1) ±x1 (yi) h(yn)

and so, setting h= 1, from (61) and (66) we get

±G¥
±x1

[1] =
y X

±yi(x1) f¥ (X)±X

= f¥( x1 W)±W =D¥ ( x1 )

as claimed. Next,

±2

±x2±x1
hX =

1 i1=i2 n

h(y1) ±x1 (yi1 ) ±x2 (yi2 ) h(yn)

and so setting setting h= 1 we get

±2G¥
±x2±x1

[1] =

1 i1=i2 n

±x1
(yi1 )±x2 (yi2 ) f(X)±X

=

n=2

2Cn,2
n!

f¥ ( y1,y2,w1, : : : ,wn 2 )dw1 dwn 2

=

j=0

1
j!

f¥ ( y1,y2,w1, : : : ,wj )dw1 dwj

=D¥ ( y1,y2 )

as claimed. Continue inductively in this fashion.
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D. Proof of Proposition 2a

By definition of h(Y),

y Y

h(y) f(Y)±Y

=
n=0

1
n!

(h(y1)+ + h(yn))f( y1, : : : ,yn)dy1 dyn

=
n=1

n

n!
h(y)f( y,w1 : : : ,wn 1 )dw1 dwn 1dy

= h(y)
j=1

1
j!

f( y,w1 : : : ,wj )dw1 dwj dy

= h(y)D(y)dy:

E. Proof of Proposition 2b

By definition of h(Y),

h(Y)f(Y)±Y

=
n=2

1
n!

1 i=j n

h(yi) h(yj) f( y1, : : : ,yn )dy1 dyn

=
n=2

2Cn,2
n!

h(y1)h(y2)f( y1,y2,w1, : : : ,wn 2 )

dw1 dwn 2dy1dy2

= h(y1)h(y2)

j=0

1
j!

f( y1,y2,w1, : : : ,wj dw1 dwj dy1dy2

= h(y1)h(y2) f( y1,y2 W)±W dy1dy2

= h(y1)h(y2)D( y1,y2 )dy1dy2

where D( y2,y2 ) is the second-order multitarget
moment of f(Y). But by Theorem 1

D( y1,y2 ) =
±2G

±y1±y2
[1]:

F. Proof of Proposition 3 (PHD of a Functional
Transformation of a PGFL)

The functional derivative of the PGFL G[h] =
G¥ [©[h]] is

±G

±x
[h] =

±

±x
ª[h]X f¥(X)±X

where for X = x1, : : : ,xn

±

±x
ª [h]X =

±

±x
ª [h](x1) ª [h](xn)

=
n

i=1

ª [h](x1)
±ªxi
±x

[h] ª[h](xn):

Substituting h= 1 into this equation and using
©[1](x) = 1,

±

±x
ª [h]X

h=1
=

n

i=1

±ªxi
±x

[1] =
n

i=1

Dxi(x):

The claimed result follows from (61) and (66):

D¥(x) =
±G¥
±x

[1] =
w X

Dw(x) f¥(X)±X

= Dw(x) D¥(w)dw:

G. Proof of Theorem 2 (PHD is the First-Order
Multitarget Moment)

If f(X) and D( x ) are the multitarget posterior
and first-order multitarget moment of ¥, we are to
show that

E[ ¥ S ] =
S

D( x )dx

for any region S of state space. From (59) we have
D(x) = ±X(x)f(X)±X where ±X( x ) = §w X±w(x).
So, if 1S(x) is the set indicator function we get, as
claimed:

S

D( x )dx= 1S(x)D( x )dx

= 1S(x) ±X(x)f(X)±Xdx

= 1S(x)±X(x)dxf(X)±X

= X S f(X)±X = E[ ¥ S ]:

H. Proof of Theorem 3 (Moment Inversion Formula)

Equations (67) and [7, eqn. 5.4.12, p. 133] give

f¥( x1, : : : ,xk ) = j¥,k(x1, : : : ,xk)

=
n=0

( 1)n

n!
m¥,k+n(x1, : : : ,xk,w1, : : : ,wn)dw1 dwn

=
n=0

( 1)n

n!
D¥ ( x1, : : : ,xk w1, : : : ,wn )dw1 dwn

= ( 1) W D¥(X W)±W:
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I. Proof of Theorem 4 (Best Poisson Approximation)

We are to prove that fI(X) = e
¸I(x1) I(xn)

minimizes

K(I) = fk k(X) log
fk k(X)

fI(X)
±X

if and only if I(x) =Dk k(x), where Dk k(x) =
Dk k(x Z (k)) is the PHD of fk k(X) = fk k(X Z(k)).
First, notice that

K(I) = fk k(X) log fk k(X)±X

fk k(X) log e ¸

x X

I(x) ±X

and so

K(I) = K1 +¸ (fk k(X)
x X

log I(x))±X

where K1 is constant (has no functional dependence
on I). Let I(x) = ¸ s(x) and Dk k(x) = ¸k k sk k(x)
where s(x) and sk k(x) are probability distributions.
Then

fk k(X)
x X

log I(x) ±X

= ¸k k sk k(x) log s(x)dx+¸k k log ¸:

For, abbreviate h(x) = log I(x). Then Proposition 2a
yields

(fk k(X)
x X

h(x))±X = h(x)Dk k(x)dx

= Dk k(x) log I(x)dx:

Substituting I(x) = ¸ s(x) and Dk k(x) = ¸k k sk k(x),
we get the claimed result. So

K(I) = K2 +¸k k sk k(x) log s(x)dx+¸ ¸k k log ¸

= K2 +¸k kK(sk k;s) +¸ ¸k k log ¸

where K2 is another constant and K(sk k;s) 0 is the
Kullback-Leibler discrimination between sk k(x) and
s(x).
Elementary calculus shows that the function

f(¸) = ¸ ¸k k log ¸ has a unique minimum value
A= f(¸k k) = ¸k k ¸k k log ¸k k at ¸= ¸k k. Consider
two cases. Case I: A 0. Then ¸ ¸k k log ¸ 0 for
all ¸ and K(D) is minimized if and only if K(sk k;s)
and ¸ ¸k k log ¸ are minimized separately, i.e., if
and only if s= sk k, ¸= ¸k k. Case II: A < 0. Then
A+¸ ¸k k log ¸ 0 for all ¸ and

K(I) = K3 +¸k kK(sk k;s) A+¸ ¸k k log ¸

for some constant K3. This is minimized if and only
if K(sk k;s) and A+¸ ¸k k log ¸ are separately
minimized, which occurs if and only if s = sk k and
¸= ¸k k .

J. Proof of Theorem 5 (PHD Time-Update Equation)

Let fk k(Y Z (k)) denote the multitarget posterior at
time-step k. Then its prediction to the next time-step is
(eqn. (3))

fk+1 k(Y Z (k)) = fk+1 k(Y X)fk k(X Z (k))±X

where fk+1 k(Y X) is the multitarget Markov transition
density, (the distribution of ¥k+1 k). The PGFL of
fk+1 k(Y Z (k)) is

Gk+1 k[h] = hYfk+1 k(Y Z (k))±Y

= hYfk+1 k(Y X)±Y fk k(X Z (k))±X

= Gk+1 k[h X]fk k(X Z (k))±X:

(Gk+1 k[h X] is the PGFL of fk+1 k(Y X).) The PHD
of Gk+1 k[h] is

Dk+1 k(x) =
±Gk+1 k

±x
[1]:

Before we can compute this we must first
determine the formula for Gk+1 k[h X] and then,
from this, the formula for Gk+1 k[h]. By assumption,
¥k+1 k = ¥(X) ª(X) ª0 where ¥(X) = ¥(x1)
¥(xn) is the set of surviving targets, ª (X) =ª (x1)

ª(xn) is the set of spawned targets, and ª0 is the
set of entering targets. Also, ¥(x) = Ø with probability
1 pS(x) and ¥(x) = Y(x) with probability pS(x),
where Y(x) is a random vector whose distribution is
fk+1 k(y x). The multitarget distributions of ª(x)
and ª0 are bk+1 k(Y x) and bk+1 k(Y), respectively.
The ¥(x1), : : : ,¥(xn), ª (x1), : : : ,ª (x¿ ), ª0 are
independent.

The PGFL Gk+1 k[h X] of ¥k+1 k (i.e., of
fk+1 k(Y X)) is the product of the PGFLs of
¥(x1), : : : ,¥(xn), ª (x1), : : : ,ª (x¿ ), and ª0 (eqn. (45)).
The PGFL of ¥(x) is (Proposition 4)

G¥(x)[h] = 1 pS(x) +pS(x)ph(x)

where ph(x) = h(x)fk+1 k(y x)dx. So, the PGFL of
¥k+1 k is

Gk+1 k[h X] = (1 pS +pSph)
X bXh eh

where bh(x) = hXbk+1 k(X x)±X is the PGFL of
ª (x) and eh = hXbk+1 k(X)±X is the PGFL of ª0.
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We now compute the the PGFL of fk+1 k(X Z (k)).
It is

Gk+1 k[h] = Gk+1 k[h X]fk k(X Z(k))±X

= eh (1 pS +pSph)
X bXh fk k(X Z(k))±X

= eh Gk k[(1 pS +pSph)bh] = eh Gk k[©[h]]

where ©[h] = (1 pS +pSph)bh. However,

±Gk+1 k

±x
[h] =

±

±x
eh Gk k[ª [h]]+ eh

±

±x
Gk k[ª[h]]

and so by (61) and (66) the PHD of Gk+1 k[h] is

Dk+1 k(x) =
±Gk+1 k

±x
[1] =

±

±x
eh

h=1
Gk k[ª [1]]

+ e1
±

±x
Gk k[ª [h]]

h=1

=
±

±x
eh

h=1
1+1

±

±x
Gk k[ª[h]]

h=1

= bk+1 k(x) +
±

±x
Gk k[ª [h]]

h=1

where bk+1 k(x) is the PHD of bk+1 k(X). On the other
hand, from Proposition 3 we know that the PHD of
Gk k[©[h]] is

Dk+1 k(x) =
±ªw
±x

[1] Dk k(w)dw

where ©w[h] = ©[h](w) and so

±ªw
±x

[h] =
±

±x
(1 pS(w) +pS(w)ph(w))bh(w)

= pS(w)
±

±x
ph(w) bh(w)

+ (1 pS(w) +pS(w)ph(w))
±

±x
bh(w)

and so from (54)

±ªw
±x

[h] = pS(w) fk+1 k(x w) bh(w)

+ (1 pS(w) +pS(w)ph(w))bk+1 k(x w):

Setting h= 1,

±ªw
±x

[1] = pS(w) fk+1 k(x w) 1

+ (1 pS(w)+pS(w) 1)bk+1 k(x w)

= pS(w) fk+1 k(x w) + bk+1 k(x w)

we finally get the claimed result,

Dk+1 k(x) = bk+1 k(x) + (pS(w)fk+1 k(x w)

+ bk+1 k(x w))dw:

K. Proof of Theorem 6 (Single-Sensor Bayes Update)

Let fk+1 k(X Z (k)) be the time-predicted multitarget
posterior and Zk+1 = z1, : : : ,zm a new scan of
observations. The data-updated multitarget posterior
is given by Bayes’ rule:

fk+1 k+1(X Z (k+1)) = K 1fk+1(Zk+1 X)fk+1 k(X Z(k))

K = fk+1(Zk+1 Z (k))

= fk+1(Zk+1 X)fk+1 k(X Z (k))±X:

Define the two-variable PGFL

F[g,h] = hXgZfk+1(Z X)fk+1 k(X Z (k))±X±Z

= hXGk+1[g X]fk+1 k(X Z (k))±X

where Gk+1[g X] is the PGFL

Gk+1[g X] = gZfk+1(Z X)±Z

of fk+1 k(X Z(k)). From (26) and (52) the denominator
of Bayes’ rule can be rewritten as

fk+1(Zk+1 Z (k)) =
±mF

±zm ±z1
[0,1] (110)

for any Zk+1 = z1, : : : ,zm . Equations (26), (52), (61),
and (66) tell us that the PHD of fk+1 k+1(X Z (k+1))
can be rewritten as

Dk+1 k+1(x Z (k+1)) =
1

fk+1(Zk+1 Z (k))
±m+1F

±zm ±z1±x
[0,1]

(111)

The random observation-set § is §k+1 = §(x1)
§(xn) £ where £ is the Poisson false alarm

process and where §(x) = Ø (no observation)
with probability 1 pD(x) and §(x) = Z(x) with
probability pD(x), where Z(x) is a random vector
whose distribution is fk+1(z x). By Proposition 5c
the PGFL of £ is G£[g] = e

¸c[g] ¸ where c[g] =
g(z)c(z)dz. The §(x1), : : : ,§(xn), £ are statistically

independent.
Given this, the PGFL G[g x] of §(x) is, from

Proposition 4,

G[g x] = 1 pD(x) +pD(x)pg(x)

where pg(x) = g(z)fk+1(z x)dz. From conditional
independence and G£[g] = e

¸c[g] ¸, c[g] =
g(z)c(z)dz, the PGFL of §k+1 is

Gk+1[g X] =G[g x1] G[g xn] G£[g]

by (45). Consequently, if we abbreviate

h0 = qD +pDpg , qD = 1 pD
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then

F[g,h] = hXhX0 e
¸c[g] ¸fk+1 k(X Z (k))±X

= e¸c[g] ¸ (h0h)
Xfk+1 k(X Z (k))±X

= e¸c[g] ¸Gk+1 k[h0h]

= e¸c[g] ¸Gk+1 k[h(qD+pDpg)]:

Assume now that fk+1 k(X Z (k)) is Poisson:

Gk+1 k[h] = e
¹s[h] ¹, s[h]= h(x)s(x)dx

so the PHD of fk+1 k(X Z (k)) is Dk+1 k(x) = ¹s(x).
Then

Gk+1 k[h(qD +pDpg)] = exp(¹s[hqD]+¹s[hpDpg] ¹)

F[g,h] = exp(¸c[g] ¸+¹s[hqD] +¹s[hpDpg] ¹):

Set h= 1 and use qD = 1 pD to get

F[g,1] = exp(¸c[g] ¸ ¹c[pD] +¹c[pDpg])

and compute fk+1(Zk+1 Z(k)) in (111). For Z =Ø,

fk+1(Zk+1 Z (k)) = F[0,1] = e ¸ ¹s[pD]:

For Zk+1 = z1 , first compute the functional
derivative:

±F

±z1
[g,1] = F[g,1]

@

@±z1
(¸c[g] ¸ ¹s[pD]+¹s[pDpg])

= F[g,1] (¸c(z1)+¹s[pDLz1 ]): (112)

Then setting g = 0 we get

fk+1 k+1(Z Z (k)) = e ¸ ¹s[pD] (¸c(z1) +¹s[pDLz1]):

(113)

For Zk+1 = z1,z2 , compute a functional derivative of
the right-hand side of (112):

±2F

±z2±z1
[g,1] =

±

±z2
F[g,1] (¸c(z1) +¹s[pDLz1 ])

= F[g,1] (¸c(z2) +¹s[pDLz2])

(¸c(z1) +¹s[pDLz1 ]) (114)

which, after setting g = 0, leads to:

fk+1 k+1(Z Z (k)) = e ¸ ¹s[pD] (¸c(z1) +¹s[pDLz1])

(¸c(z2) +¹s[pDLz2]): (115)

For Zk+1 = z1, : : : ,zm the denominator of (111) is

fk+1 k+1(Z Z (k)) = e ¸ ¹s[pD] (¸c(z1) +¹s[pDLz1])

(¸c(zm)+¹s[pDLzm ]): (116)

Now turn to the numerator of the PHD in (111).
Begin by taking a functional derivative with respect to
h:

±F

±x
[g,h] = F[g,h]

±

±x
(¸c[g] ¸+¹s[hqD]+¹s[hpDpg] ¹)

= F[g,h] (¹qD(x)s(x)+¹pD(x)pg(x)s(x)): (117)

Then set h= 1:

±F

±x
[g,1] = F[g,1] (¹qD(x)s(x) +¹pD(x)pg(x)s(x)):

(118)

Repeat the steps of the derivation of the denominator.
For Zk+1 = Ø we set g = 0 in (118):

±F

±x
[0,1] = F[0,1] ¹qD(x)s(x): (119)

For Zk+1 = z1 , compute the functional derivative:

±2F

±z1±x
[g,1] = F[g,1] (¸c(z1) +¹s[pDLz1 ])

(¹qD(x)s(x) +¹pD(x)pg(x)s(x))

+F[g,1] ¹pD(x)Lz1 (x)s(x)

and then set g = 0:

±2F

±z1±x
[0,1] = e ¸ ¹s[pD] (¸c(z1)+¹s[pDLz1 ]) ¹qD(x)s(x)

+ e ¸ ¹s[pD ] ¹pD(x)Lz1 (x)s(x): (120)

For Zk+1 = z1,z2 , compute another functional
derivative with respect to g of the left-hand side of
(120):

±3F

±z2±z1±x
[g,1] =

±

±z2
F[g,1] (¸c(z1) +¹s[pDLz1 ])

(¹qD(x)s(x) +¹pD(x)pg(x)s(x))

+F[g,1] (¸c(z1) +¹s[pDLz1 ])

±

±z2
(¹qD(x)s(x) +¹pD(x)pg(x)s(x))

+
±

±z2
F[g,1] ¹pD(x)Lz1 (x)s(x)

= F[g,1] (¸c(z2) +¹s[pDLz2 ])

(¸c(z1) +¹s[pDLz1 ])

(¹qD(x)s(x) +¹pD(x)pg(x)s(x))

+F[g,1] (¸c(z1) +¹s[pDLz1 ])

¹pD(x)Lz2 (x)s(x)

+F[g,1] (¸c(z2) +¹s[pDLz2 ]):

¹pD(x)Lz1 (x)s(x):
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Setting g = 0 we finally get

±3F

±z2±z1±x
[0,1] = e ¸ ¹s[pD] (¸c(z2) +¹s[pDLz2])

(¸c(z1) +¹s[pDLz1])

¹qD(x)s(x)

+ e ¸ ¹s[pD] (¸c(z1)+¹s[pDLz1 ])

¹pD(x)Lz2 (x)s(x)

+ e ¸ ¹s[pD] (¸c(z2)+¹s[pDLz2 ])

¹pD(x)Lz1 (x)s(x):

In general, a proof by induction shows that

±m+1F

±zm ±z1±x
[0,1]

= e ¸ ¹s[pD]

z Zk+1

(¸c(z)+¹s[pDLz]) ¹qD(x)s(x)

+ e ¸ ¹s[pD]

z Zk+1

(¸c(z) +¹s[pDLz])

z Zk+1

¹pD(x)Lz(x)s(x)
¸c(z)+¹s[pDLz]

: (121)

Substituting (116), (121) into (111),

Dk+1 k+1(x) = ¹qD(x)s(x)

+
z Zk+1

¹pD(x)Lz(x)s(x)
¸c(z) +¹s[pDLz]

= 1 pD(x)+
z Zk+1

pD(x)Lz(x)
¸c(z) +¹s[pDLz]

¹s(x)

(122)
and so, as claimed,

Dk+1 k+1(x)

= 1 pD(x) +
z Zk+1

pD(x)Lz(x)
¸c(z) +Dk+1 k[pDLz]

Dk+1 k(x):

(123)

VII. CONCLUSION

In this paper I used finite-set statistics (FISST)
to provide a systematic and rigorous foundation
for “single-density” multitarget detection, tracking,
and identification approaches that collapse the
multitarget posterior into a single density function
on single-target state space X. The core concept
is the Stein-Winter probability hypothesis density
(PHD). After framing the optimal multitarget tracking
problem as a multitarget recursive Bayes filtering
problem, I showed that the PHD is a first-order
statistical moment of the time-evolving random

state-set ¥k k. I derived a recursive Bayes filter for the
PHD which generalizes that of earlier papers in that it
allows nonconstant probability of detection. This filter
can be interpreted as a multitarget statistical analog of
a constant-gain Kalman filter (e.g., the ®-¯-° filter).

Current work is directed at computational
implementation of the PHD filter using
particle-systems and related techniques. Such
techniques are potentially practical since they have
guaranteed-convergence properties and enjoy O(N)
computational complexity in the number N of
particles. It is anticipated that implemented PHD
filters will be most useful in high-density applications
where multihypothesis trackers begin to fail, e.g.,
cluster tracking and group-target tracking [25, 43].
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