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The multitarget recursive Bayes nonlinear filter is the

theoretically optimal approach to multisensor-multitarget

detection, tracking, and identification. For applications in

which this filter is appropriate, it is likely to be tractable for

only a small number of targets. In earlier papers we derived

closed-form equations for an approximation of this filter based

on propagation of a first-order multitarget moment called the

probability hypothesis density (PHD). In a recent paper, Erdinc,

Willett, and Bar-Shalom argued for the need for a PHD-type filter

which remains first-order in the states of individual targets, but

which is higher-order in target number. In this paper we show

that this is indeed possible. We derive a closed-form cardinalized

PHD (CPHD) filter, which propagates not only the PHD but also

the entire probability distribution on target number.
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I. INTRODUCTION

The multitarget recursive Bayes filter
is the theoretically optimal approach to
multisensor-multitarget detection, tracking, and
identification. Given a time-sequence Z(k) : Z1, : : : ,Zk
of multitarget measurement-sets, it propagates the
Bayes multitarget posterior via an alternating sequence
of predictor (time-update) and corrector (data-update)
steps (see Section IIF):

¢ ¢ ¢ ¡! fkjk(X j Z(k)) ¡!predictor
fk+1jk(X j Z(k))

¡!
corrector

fk+1jk+1(X j Z(k+1))¡! ¢¢ ¢ :

For applications in which this filter is
appropriate–i.e., those, such as low SNR in which
conventional approaches such as multi-hypothesis
correlation (MHC) perform poorly–it is likely to
be tractable only for a small number of targets.
Consequently, it may prove to be of limited practical
interest in the absence of drastic but principled
approximation strategies.
In single-target problems the computationally

fastest approximate filtering approach is the
constant-gain Kalman filter, of which the alpha-beta
filter is the most familiar instance. Such filters
propagate a first-order statistical moment (the
posterior expectation) in the place of the posterior
distribution. In an earlier paper [22] we proposed
an analogous strategy for multitarget systems:
propagation of a first-order multitarget moment. This
moment, the probability hypothesis density (PHD)
Dkjk(x j Z(k)), is uniquely defined by the property that
its integral in any region of state space is the expected
number of targets in that region. We derived recursive
Bayes filter equations for the PHD that account for
nonconstant probability of detection, Poisson false
alarm processes, and appearance, spawning, and
disappearance of targets (see Section IIG):

¢ ¢ ¢ ¡!Dkjk(x j Z(k)) ¡!predictor
Dk+1jk(x j Z(k))

¡!
corrector

Dk+1jk+1(x j Z(k+1))¡! ¢¢ ¢ :

We also showed that the PHD is a best-fit
approximation of the multitarget posterior in an
information-theoretic sense.
The PHD filter has inspired much recent research,

to be summarized in Section IIG1. Some of this
research [20, 31] suggests, somewhat surprisingly, that
the PHD filter may have practical utility beyond the
cluster tracking and group-target tracking applications
for which it was originally intended. Nevertheless, its
potential limitations have been evident to those who,
like the author, are aware of the superior performance
of second-order (Kalman) over first-order (alpha-beta)
filters in the single-target case. At an early stage
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we investigated the possibility of second-order
generalizations of the PHD filter which would
propagate a covariance density Ckjk(x,y j Z(k)) as
well as the PHD [23, pp. 155—156]. We concluded
that such filters were unlikely to be computationally
tractable under realistic sensing conditions.
In a recent conference paper [16, sect. 5.2] Erdinc,

Willett, and Bar-Shalom pointed out that the PHD
filter’s greatest potential strength is also arguably
its most obvious potential limitation. On the one
hand, it propagates an estimate Nkjk of the expected
number n̄ of targets in the scene, thus providing a
potentially powerful decluttering technique. On the
other hand, the value of Nkjk is very unstable in the
presence of missed detections and/or significantly
large false alarm densities. These authors argued that
the instability of Nkjk is a direct consequence of the
fact that the PHD is only first-order. Using a simple
single-target example, they showed that the instability
of Nkjk is attributable to the PHD filter’s linearization
n̄k+1jk+1 = (1¡pD) ¢ n̄k+1jk of the following nonlinear
formula for expected number of targets [16, eq. (37)]
at the data-update (corrector) step:

n̄k+1jk+1 =
(1¡pD) ¢ n̄k+1jk
1¡ n̄k+1jk ¢pD

: (1)

Here pD < 1 is (constant) probability of detection
and, under these assumptions, n̄k+1jk is the predicted
track probability (probability of existence) of the
target. If n̄k+1jk = 1, for example, (1) estimates
n̄k+1jk+1 = 1 whereas the PHD filter loses information
by estimating n̄k+1jk+1 = 1¡pD.
At the conference we noted that, in lieu of a

tractable second-order solution, a heuristic “fix”
(maintaining a windowed running average of Nkjk)
results in a reasonably stable and accurate estimate
of target number. However, this remedy will be
effective only if the rate of target appearance and/or
disappearance is not too great compared with the
data-update rate.
Erdinc et al. further proposed that the PHD filter

should be generalized to provide not only Nkjk but also
an estimate ¾2kjk of the variance of Nkjk. What was not
evident at the time was that this suggestion constituted
a different way of looking at second-order multitarget
approximation. They were proposing a search for
a filter which remains first-order in the states of
individual targets, but which is higher-order in target
number. Such a partial higher-order solution could
sidestep much of the computational intractability of a
full second-order approximation. The primary purpose
of this paper is to demonstrate that, contrary to our
initial expectations, partial higher order multitarget
approximation is indeed possible.
This realization led us to another insight. The

instability of Nkjk is attributable not just to loss of
second-order information, but also to a well-known

fact about state estimation. The PHD filter employs
the expected a posteriori (EAP) state estimator,
i.e., the expected value n̄kjk =

P
n¸0 n ¢pkjk(n j Z(k))

of the probability distribution pkjk(n j Z(k)) of the
number of targets (hereafter called the cardinality
distribution). EAP estimation typically produces
unstable and inaccurate state-estimates under lower
SNR conditions. The reason is that the minor modes
of the posterior distribution, which are induced by
false alarms and thus tend to be highly random,
erratically perturb the expected value away from
the target-induced primary mode. The maximum
a posteriori (MAP) estimator, by way of contrast,
ignores minor modes and locks onto the more stable
and accurate major mode. For this reason it is more
commonly employed in the application of nonlinear
filters.
Consequently, more stable and accurate estimates

of target number could be possible if the entire
distribution pkjk(n j Z(k)) were recursively propagated
along with the PHD and if MAP estimates were
derived from it. A second purpose of this paper is to
show that this also is possible.
We derive closed-form predictor and corrector

equations for what we call the cardinalized PHD
(CPHD) filter, (61)—(65). This is a generalization of
the PHD filter which propagates not only Dkjk(x j Z(k))
but also pkjk(n j Z(k)) and its probability generating
function Gkjk(x j Z(k)) via a time-update step

¢ ¢ ¢ ¡! pkjk
Gkjk

¡! pk+1jk
Gk+1jk

¢ ¢ ¢ ¡! Dkjk
Nkjk

¡!
predictor

Dk+1jk
Nk+1jk

(2)

and a data-update step

pk+1jk
Gk+1jk

¡! pk+1jk+1
Gk+1jk+1

¡! ¢¢ ¢

"#

Dk+1jk
Nk+1jk

¡!
corrector

Dk+1jk+1
Nk+1jk+1

¡! ¢¢ ¢ : (3)

The pair of vertical arrows at the corrector step
indicates that the filter for p and G and the filter
for D and N are mutually coupled. On the one
hand, the formula for Dk+1jk+1(x) requires Gk+1jk(x)
and its derivatives of all orders G(i)k+1jk(x), i¸ 0.
On the other hand, the formulas for Gk+1jk+1(x)
and pk+1k+1(n) require Dk+1jk(x) and its integral
Nk+1jk =

R
Dk+1jk(x)dx. The CPHD filter recursion

therefore requires, for every k ¸ 0, explicit formulas
for Nk+1jk and Nk+1jk+1, for Dk+1jk(x) and Dk+1jk+1(x),
for pk+1jk(n) and pk+1jk+1(n), and for all derivatives of
Gk+1jk(x) and Gk+1jk+1(x).
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The CPHD filter further generalizes the PHD filter
in that the sensor false alarm process can be a general
“independent and identically distributed (IID) cluster
process” [11, pp. 122—123, 145] rather than strictly
Poisson. That is, the physical distribution of false
alarms is still governed by a single intensity density,
but the probability distribution of their number can
now be arbitrary. In other respects the CPHD filter
is less general than the PHD filter in that spawning
of targets by other targets can no longer be explicitly
modeled.
The CPHD filter is likely to be computationally

tractable in many situations of practical interest
(see Section IIID). Vo, Vo, and Cantoni have
implemented and successfully tested it and compared
its performance with that of the PHD filter and
the joint probabilistic data association (JPDA)
filter (see Section V). There are limits to its
computability, however, since its corrector step has
computational order O(n ¢m2 ¢ log2m). A search for
partial second-order approximations of order O(n ¢m)
is therefore advisable.
The paper is organized as follows. Section II

reviews those basic concepts of multitarget statistics
required to understand what follows. The CPHD filter
is introduced in Section III. Mathematical proofs
have been relegated to Section IV. A summary and
conclusions may be found in Section V.

II. BASIC MULTITARGET STATISTICS

Finite-set statistics (FISST) [18, 21, 26—29] is,
in part, an “engineering-friendly” formulation of
point process theory [11] for information fusion
applications. This section reviews those aspects of
FISST necessary to understand the remainder of the
paper.
We introduce set integrals and multitarget

probability density functions in Section IIA, and
probability hypothesis densities or PHDs (first-order
multitarget moments) in Section IIB. Probability
generating functionals (PGFLs) and their functional
derivatives are introduced in Sections IIC and IID,
respectively. Poisson processes and IID cluster
processes, families of multitarget processes central to
this paper, are described in Section IIE. The general
multitarget recursive Bayes filter is introduced in
Section IIF and its first-order multitarget moment
approximation, the PHD filter, in Section IIG. Since
derivation of the predictor and corrector equations for
the CPHD filter requires the same techniques used
to derive those for the PHD filter, we review these in
Section IIH.

A. Multitarget Probability Density Functions

Assume that states of individual targets have
the form x= (x0,c) where x0 denotes the continuous

kinematic state variables (e.g., position, velocity, etc.)
and c the discrete state variables (e.g., target type,
target identity, track label, etc.). Since the number
n of targets in a scenario can be any nonnegative
integer, and since targets have no intrinsic ordering,
the state X of a multitarget system is most naturally
represented as a finite set X = fx1, : : : ,xng where
x1, : : : ,xn are the target state-vectors. In a Bayesian
formulation the unknown state variable X must be a
random variable, i.e., a random finite set ¥ in which
not only the x1, : : : ,xn randomly vary, but so does n.
The multitarget probability distribution of ¥ is a

probability distribution f¥(X) on the finite-set variable
X–which is to say, it must sum to unity over all
possible multitarget states X. This requires a set
integralZ

f¥(X)±X

¢
=f(Ø)+

1X
n=1

1
n!

Z
f¥(fx1, : : : ,xng)dx1 ¢ ¢ ¢dxn

(4)

which accounts for the random variability of n as
well as of the x1, : : : ,xn. A multitarget probability
distribution must satisfy

R
f¥(X)±X = 1. Multitarget

distributions differ from single-target distributions in
that the units of measurement of f¥(X) vary with the
number jXj of elements in X.
The cardinality distribution is the probability

distribution p¥(n)
¢
=Pr(j¥j= n) of the number of

elements in the random finite subset ¥. It is given by

p¥(n) =
Z
jXj=n

f¥(X)±X (5)

¢
=
1
n!

Z
f¥(fx1, : : : ,xng)dx1 ¢ ¢ ¢dxn: (6)

In general, measurements collected from multiple
targets can be arbitrary in number as well as
in value, and do not have any natural ordering.
Thus, multitarget measurements in general will
have the form of a finite set Z = fz1, : : : ,zmg of
ordinary measurements and the random multitarget
measurement will be a random finite subset § of
measurements.
Rather than having to develop parallel but

otherwise identical formulations of multi-object
statistics for states and for measurements, it is more
efficient to develop a single formulation of probability
distributions fª (Y) of random finite subsets ª with
instantiations ª = Y drawn from arbitrary (e.g., state
or measurement) spaces.

B. First-Order Multitarget Moments

A naïve definition of the expected value of a
random finite set ª would be ª̄ =

R
Y ¢fª (Y)±Y.
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However, this integral is mathematically nonsensical
since addition Y+Y0 of finite subsets Y,Y0 cannot
be usefully defined. Consequently, one must instead
select a transformation Y 7! ¿(Y) which converts finite
subsets Y into vectors in some vector space. This
transformation should also transform unions into
sums: ¿ (Y[Y0) = ¿(Y)+ ¿(Y0) whenever Y\Y0 =Ø.
Then one can define an “indirect” expected value as
E[¿(ª )]. We select ¿(Y) = ±Y where

±Y(y)
¢
=
X
w2Y

±w(y) (7)

and where ±w(y) denotes the Dirac delta function
concentrated at w. Then

Dª (y)
¢
=E[±ª (y)] =

Z
±Y(y) ¢fª (Y)±Y (8)

is a multitarget analog of the concept of expected
value. Note that it is a conventional density function.
It is not a probability density since the integral of
Dª (y) in any region S is the expected number of
objects of ª in that region:Z

S

Dª (y)dy= E[jS \ª j]: (9)

The density Dª (y) is called the “intensity density” or
PHD of ª (or of fª (Y)). Intuitively speaking, Dª (y)
represents the zero-probability event Pr(y 2ª) in the
same way that a conventional probability density fY(y)
represents the zero-probability event Pr(Y= y). If the
elements of Y = X are states, the value D¥(x) can be
interpreted as the track density at x.

C. Probability Generating Functionals

Signal processing engineers are familiar with
the power of integral transform methods: Fourier
transforms, Laplace transforms, z-transforms, etc.
[41]. Mathematical operations which are complicated
in the signal domain, such as integrals, often become
simple when converted to the frequency domain using
a suitable integral transform. In ordinary statistics it is
similarly useful to employ transform concepts such as
characteristic function, probability generating function,
etc. We have likewise found it useful to introduce
transform methods into multitarget analysis [22].
In Section IIC1 we summarize the properties of the
probability generating function (PGF) of a random
integer. In Section IIC2 we generalize this concept to
the PGFL of a random finite set.
1) Probability Generating Functions: Let pJ (n) =

Pr(J = n) be the probability distribution of a random
nonnegative integer J . The PGF of J is, whenever
defined on 0· y · 1,

GJ (y)
¢
=E[yJ ] =

1X
n=0

yn ¢pJ (n): (10)

The PGF gets its name from the fact that

pJ (n) =
1
n!
G(n)J (0) (11)

where G(n)J (y) denotes the nth derivative of GJ (y).
Note that 0·GJ (y)· 1 and GJ (1) = 1. (If pJ (0),
pJ (1), : : : ,pJ (n),: : :were the components of a
discrete-time signal then GJ (z

¡1) would be its
z-transform [41, p. 61, eq. (4—6)].)
If nJ is the expected value and ¾

2
J the variance of

J , it is easy to show that

nJ =G
(1)
J (1), ¾2J =G

(2)
J (1)¡ n2j + nJ : (12)

If G1(y) and G2(y) are two PGFs with respective
expected values n1, n2 and variances ¾

2
1, ¾

2
2, then

G12(y) =G1(y) ¢G2(y) is a PGF and its expected value
and variance are, respectively,

n12 = n1 +n2, ¾212 = ¾
2
1 +¾

2
2 : (13)

The derivatives of all orders of G12(y) can be
computed using the generalized product rule

G(n)12 (y) =
nX
i=0

Cn,i ¢G(i)1 (y) ¢G(n¡i)2 (y) (14)

where Cn,i = n!=i!(n¡ i)! is the binomial coefficient.
2) Probability Generating Functionals: Let fª (Y)

be the probability distribution of a finite random set
ª , i.e.,

R
fª (Y)±Y = 1. Its PGFL is

1

Gª [h]
¢
=E[hª ] =

Z
hY ¢fª (Y)±Y (15)

where for any “test function” h(y) with 0· h(y)· 1,
hY is defined as

hY
¢
=
½
1 if Y =Ø

h(y1) ¢ ¢ ¢h(yn) if Y = fy1, : : : ,yng
(16)

and where n= jYj. Note that 0·Gª [h]· 1 and
Gª [1] = 1. Roughly speaking, fª 7!Gª [h] is a kind
of generalized z-transform, in which functions fª (Y)
on the finite-set domain are transformed into functions
on the test-function domain.
Let pª (n) =

R
jYj=n fª (Y)±Y be the cardinality

distribution of f(Y), as defined in (5), and let Gª (y)
be its PGF. If h(y) = y is a constant function with
value y, then

Gª [y] =Gª (y): (17)

1This is a simplified definition. Our definition of functional
derivatives below in (18) will be nonsensical unless PGFLs are
defined on test functions h(x) which can involve Dirac delta
functions. We ignore this complexity here. See [22, p. 1161,
sect. A] for a more careful definition.
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D. Functional Derivatives of PGFLs

The first functional derivative of a PGFL Gª [h]
with respect to y is

±Gª
±y

[h]
¢
=lim
"&0

Gª [h+ "±y]¡Gª [h]
"

(18)

where ±y(y
0) denotes the Dirac delta function

concentrated at y and where, for each fixed h, the
transformation y 7! (±Gª=±y)[h] is assumed to be
linear and continuous.
Iterated functional derivatives are defined

recursively. If Y = fy1, : : : ,yng with jYj= n,
±Gª
±Y

[h]
¢
=

±nGª
±y1 ¢ ¢ ¢±yn

[h] (19)

¢
=
±

±yn

μ
±n¡1Gª

±y1 ¢ ¢ ¢±yn¡1
[h]
¶
: (20)

For completeness, the functional derivative with
respect to the empty set Y =Ø is defined as

±Gª
±Ø

[h]
¢
=Gª [h]: (21)

The importance of functional derivatives arises
from the fact that they allow multi-object density
functions to be computed from PGFLs. Let fª (Y)
be a multi-object density function and let Gª [h] be
its PGFL. Then it can be shown that the following
multi-object analog of (11) is true:

fª (Y) =
±Gª
±Y

[0]: (22)

The PHD Dª (y), or first multi-object moment of
fª (Y), can be computed from the PGFL of fª (Y):

Dª (y) =
±Gª
±y

[1]: (23)

Functional derivatives obey “turn the crank” rules
analogous to those of elementary calculus, e.g.:
Linear Functional Rule: Let s(y) be a density

function and s[h]
¢
=
R
h(w) ¢ s(w)dw its corresponding

linear functional. Then ±ns=(±y1 ¢ ¢ ¢±yn)[h] = 0 if n > 1
and

±s

±y
[h] = s(y): (24)

Product Rule:

±(G1 ¢G2)
±y

[h] =
±G1
±y
[h] ¢G2[h] +G1[h] ¢

±G2
±y
[h]:

(25)
General Product Rule: Equation (25) can be

generalized to iterated functional derivatives as follows
[18, p. 151]:

±(G1 ¢G2)
±Y

[h] =
X
WμY

±G1
±(Y¡W) [h] ¢

±G2
±W

[h] (26)

where the summation is taken over all subsets W of Y
(including W =Ø and W = Y).
Chain Rule: For any ordinary real-valued function

f(y1, : : : ,yn) of real variables y1, : : : ,yn,

±

±y
f(G1[h], : : : ,Gn[h])

=
nX
i=1

@f

@yi
(G1[h], : : : ,Gn[h]) ¢

±Gi
±y
[h]: (27)

Power Rule: Substituting n= 1 and f(y) = yn into
the chain rule, we get

±

±y
G[h]n = n ¢G[h]n¡1 ¢ ±G

±y
[h]: (28)

D. IID Cluster Processes

This section introduces multitarget processes which
are central to our discussions later. The multitarget
Poisson process has PGFL

G[h] = e¹¢f[h]¡¹: (29)

The cardinality distribution of a Poisson process is a
Poisson distribution p(n) = e¡¹¹n=n! with PGF G(y) =
e¹y¡¹. A Poisson process on state space describes a
multitarget system in which the physical distribution
of targets is described by the single probability density
f(x) and target number by a Poisson distribution.
Let G(y) =

P1
n=0 y

n ¢p(n) be the PGF of an
arbitrary probability distribution p(n) on object
number. An IID cluster process [11, pp. 122—123,
145] is one which has a PGFL of the form

G[h] =G(f[h]): (30)

An IID cluster process on state space describes a
multitarget system in which the physical distribution
of targets is described by the single probability density
f(x) and target number by an arbitrary distribution
p(n).
The functional derivatives of an IID cluster

process are easily computed using the chain and linear
functional rules for functional derivatives:

±G

±y1 ¢ ¢ ¢±yn
[h] =G(n)(f[h]) ¢f(y1) ¢ ¢ ¢f(yn): (31)

This formula will allow us to derive closed-form
formulas for the CPHD corrector step, (61)—(65).

F. The Multitarget Bayes Filter

Let Z(k) : Z1, : : : ,Zk be a time-sequence of
multitarget measurement-sets. The general multitarget
Bayes recursive filter is defined by the equations

fk+1jk(X j Z(k))

=
Z
fk+1jk(X j X 0) ¢fkjk(X 0 j Z(k))±X 0 (32)
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and

fk+1jk+1(X j Z(k+1))

=
fk+1(Zk+1 j X) ¢fk+1jk(X j Z(k))

fk+1(Zk+1 j Z(k))
(33)

where the Bayes normalization factor is

fk+1(Zk+1 j Z(k))

=
Z
fk+1(Zk+1 j X) ¢fk+1jk(X j Z(k))±X (34)

and where the integrals are set integrals. These
equations are not the straightforward generalizations
of the single-target Bayes filter that they might appear
to be. They require the techniques of FISST [18, 21,
26, 27, 29].

G. The PHD Filter

As was noted in the Introduction, (32) and (33)
are likely to be tractable only for a small number
of targets in those applications in which they are
appropriate e.g., low SNR. Consequently, we proposed
the PHD filter [22] as a multitarget statistical
analog of the computationally fastest approximate
single-target filtering approach: the constant-gain
Kalman filter. This filter propagates a first-order
statistical moment in the place of the multitarget
posterior distribution.
In this section we review the basic ideas of

the PHD filter: the prediction step (Section IIG2),
correction step (Section IIG3), and estimation step
(Section IIG4). We begin in Section IIG1 by briefly
summarizing recent PHD filter research.
1) Recent PHD Filter Research: The PHD filter

has usually been implemented using sequential
Monte Carlo (a.k.a. particle-system) methods, as
proposed by Kjellström (nee Sidenbladh) [38] and by
Zajic and Mahler [55]. Instances are Erdinc, Willett,
and Bar-Shalom [16], and Vo, Singh, and Doucet
[49]. Vo, Singh, Doucet, and Clark have established
convergence results for the particle-PHD filter [49, p.
1234, Prop. 3], [5].
Vo and Ma [45] have, under certain simplifying

assumptions, devised a closed-form Gaussian-mixture
implementation which greatly improves the
computational efficiency of the PHD filter. This
approach is inherently capable of maintaining track
labels [9, 10]. Clark and Vo [10] have proved a
strong L1 uniform convergence property for the
Gaussian-mixture PHD filter, in the sense that “each
step in time of the PHD filter will maintain a suitable
approximation error that converges to zero as the
number of Gaussians in the mixture tends to infinity.”
In this section we briefly summarize current PHD

filter research.

Erdinc, Willett, and Bar-Shalom [17] have
proposed a purely physical interpretation of both the
PHD and CPHD filters.
Since the “core” PHD filter does not maintain

labels for tracks from time-step to time-step, two
groups of researchers have independently proposed
“peak to track association” techniques for maintaining
track labels with particle-PHD filters: Panta, Vo,
Doucet, and Singh [31]; and Lin, Kirubarajan, and
Bar-Shalom [20]. These authors have demonstrated
in 1D and 2D simulations that their track-valued
PHD filters can outperform conventional MHT-type
techniques (i.e., significantly fewer false and dropped
tracks).
Punithakumar and Kirubarajan [37] have

implemented a multiple motion model version of the
PHD filter, as have Pasha, Vo, Tuan, and Ma [34, 35].
Punithakumar, Kirubarajan, and Sinha [36] have

devised and implemented a distributed PHD filter
that addresses the problem of communicating and
fusing multitarget track information from a distributed
network of sensor-carrying platforms.
Balakumar, Sinha, Kirubarajan, and Reilly [2] have

applied a PHD filter to the problem of tracking an
unknown and time-varying number of narrowband,
far-field signal sources, using a uniform linear array
of passive sensors, in a highly nonstationary sensing
environment.
Ahlberg, Hörling, Kjellström, Jöred, Mårtenson,

Neider, Schubert, Svenson, Svensson, Undén, and
Walter of the Swedish Defence Research Agency
(FOI) have employed PHD filters for group-target
tracking in an ambitious situation assessment
simulator system called “IFD03” [38—40].
Tobias and Lanterman have applied the PHD filter

to target detection and tracking using bistatic RF
observations [42—44].
Clark, Bell, de Saint-Pern, and Petillot have

applied the PHD filter to both 2D and 3D active-sonar
problems [4, 6—9].
Ikoma, Uchino, and Maeda [19] have applied a

PHD filter to the problem of tracking the trajectories
of feature-points in time-varying optical images.
Wang, Wu, Kassim, and Huang [54] have employed
such methods to tracking groups of humans in digital
video.
Zajic, Ravichandran, et al. [56] report an algorithm

in which a PHD filter is integrated with a robust
classifier algorithm which identifies airborne targets
from high range-resolution radar (HRRR) signatures.
El-Fallah, Zatezalo, et al. [13—15, 12] have

demonstrated implementations of the PHD filter-based
sensor management approach described in [24].
2) PHD Filter Predictor: From time-step k we

have in hand the PHD Dkk(x j Z(k)). We are to derive
a formula for the predicted PHD Dk+1jk(x j Z(k+1)). We
make the following assumptions.
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a) Motion of individual targets: fk+1jk(x j x0) is the
single-target Markov transition density.
b) Disappearance of existing targets: pS,k+1jk(x

0) is
the probability that a target with state x0 at time-step
k will survive in time-step k+1, and is hereafter
abbreviated as pS(x).
c) Target spawning: bk+1jk(X j x0) is the likelihood

that a group of new targets with state-set X will be
spawned at time-step k+1 by a single target that
had state x0 at time-step k; and its PHD is denoted by
bk+1jk(x j x0).
d) Appearance of completely new targets:

bk+1jk(X) is the likelihood that new targets with
state-set X will enter the scene at time-step k+1, and
its PHD is denoted as bk+1jk(x).

Given this it can be shown that the PHD predictor
step is [22, eq. (75)]:

Dk+1jk(x) = bk+1jk(x) +
Z
Fk+1jk(x j x0) ¢Dkjk(x0)dx0

(35)
where

Fk+1jk(x j x0)
¢
=pS(x

0) ¢fk+1jk(x j x0) + bk+1jk(x j x0):

(36)

3) PHD Filter Corrector: The PHD filter
presumes the same multitarget measurement model
that is employed in multitarget trackers such as
MHT and JPDA. From the predictor step we have
in hand the predicted PHD Dk+1jk(x j Z(k)). At
time-step k+1 we collect a new observation-set
Zk+1 = fz1, : : : ,zmg with m elements. We require a
formula for the data-updated PHD Dk+1jk+1(x j Z(k+1)).
Abbreviate Dk+1jk(x) =Dk+1jk(x j Z(k)), and
Dk+1jk+1(x) =Dk+1jk+1(x j Z(k+1)). Further,
a) Single-target measurement generation:

Lk+1,z(x) = fk+1(z j x) is the sensor likelihood function,
hereafter abbreviated as Lz(x).
b) Probability of detection: pD,k+1(x) is the

probability that an observation will be collected at
time-step k+1 from a target with state x, hereafter
abbreviated as pD(x).
c) Poisson false alarms: at time-step k+1 the

sensor collects an average number ¸k+1 of Poisson-
distributed false alarms, the spatial distribution of
which is governed by the probability density ck+1(z),
and these are hereafter abbreviated as ¸ and c(z).

An additional simplifying assumption is required
if we are to derive closed-form formulas for the
corrector step:

d) Poisson multitarget prior: the predicted
multitarget distribution fk+1jk(X j Z(k)) is approximately
Poisson with PGFL Gk+1jk[h] = e

¹s[h]¡¹ where

¹
¢
=Nk+1jk =

R
Dk+1jk(x j Z(k))dx; where s(x)

¢
=N¡1k+1jk ¢

Dk+1jk(x j Z(k)); where s[h]
¢
=
R
h(x) ¢ s(x)dx; and where

Dk+1jk[h] = ¹s[h].

Given this it can be shown that the PHD corrector
step is [22, eqs. (87)—(88)]:

Dk+1jk+1(x)»= LZk+1(x) ¢Dk+1jk(x) (37)

where for any measurement-set Z,

LZ(x)
¢
=1¡pD(x)+

X
z2Z

pD(x) ¢Lz(x)
¸c(z)+Dk+1jk[pDLz]

:

(38)

Multiple sensors: Suppose that at time-step k+1

two measurement-sets
1
Z k+1,

2
Z k+1 are collected from

two different sensors. The rigorous formula for the
PHD corrector step appears to be too complicated to
be of practical use [22, p. 1169]. The most common
heuristic approach is to apply the PHD corrector

step twice in succession, once for
1
Z k+1 and once for

2
Z k+1. A more rigorous approximate “pseudosensor”
approach has been described in [24, p. 271—276].
4) PHD Filter State Estimator: Extracting

multitarget state estimates from a PHD is conceptually
simple in principle. The PHD provides an estimate
Nkjk of the number of targets. After rounding this
to the nearest integer n, one looks for the n largest
local suprema D1, : : : ,Dn of the PHD and declares the
corresponding x1, : : : ,xn such that Di =Dkjk(xi j Zk)) to
be the state-estimates of the targets.
In practice, multitarget state estimation is easy or

difficult depending on the technique which has been
employed to implement the PHD filter. It is very easy
if one employs the Gaussian-mixture approximation
of Vo and Ma [45]. Furthermore, this approach
is inherently capable of maintaining track labels.
Multitarget state estimation is considerably more
difficult if sequential Monte Carlo approximation is
adopted. In this case, one common approach is to
use the expectation-maximization (EM) algorithm
to find the best approximation of the PHD using
a weighted sum of n Gaussian distributions. The
centroids of these Gaussians are then chosen as the
target state estimates. Clustering techniques have also
been applied [55].

H. Derivation of the PHD Filter Equations

It is necessary to review the methodology used to
derive the PHD predictor and corrector equations in
[22], since this same methodology is used to derive
the corresponding equations for the CPHD filter. We
address the PHD predictor and corrector steps in turn.
(For a more detailed summary see [27, sect. 4].)
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1) Derivation of the PHD Filter Predictor:
Rewrite the multitarget predictor equation, (32), in
PGFL form:

Gk+1jk[h] =
Z
Gk+1jk[h j X 0] ¢fkjk(X 0 j Z(k))±X 0

(39)

where Gk+1jk[h] is the PGFL of fk+1jk(X j Z(k)) and
where Gk+1jk[h j X 0]

¢
=
R
hX ¢fk+1jk(X j X 0)±X is the

PGFL of fk+1jk(X j X 0). Given the multitarget motion
model described at the beginning of Section IIG2, one
can derive a closed-form formula for fk+1jk(X j X 0) and
then for Gk+1jk[h] [22, pp. 1172—1173]:

Gk+1jk[h] = eh ¢G[(1¡pS +pSph) ¢ bh] (40)

where G[h] =Gkjk[h] is the PGFL of fkjk(X
0 j Z(k)) and

where

ph(x
0)
¢
=
Z
h(x) ¢fk+1jk(x j x0)dx (41)

bh(x
0)
¢
=
Z
hX ¢ bk+1jk(X j x0)±X (42)

eh
¢
=
Z
hX ¢ bk+1jk(X)±X: (43)

The predicted PHD Dk+1jk(x j Z(k)) can be determined
using (23) and the formulas for the functional
derivative, (24)—(28).
The CPHD predictor will be derived in the same

fashion, except that bh(x
0) = 1 identically (i.e., no

target spawning) and that G[h] will be assumed to be
an IID cluster process.
2) Derivation of the PHD Filter Corrector: Begin

by rewriting the numerator of multitarget Bayes’ rule,
(33), in PGFL form:

F[g,h]
¢
=
Z
hX ¢Gk+1[g j X] ¢fk+1jk(X j Z(k))±X

(44)
where

Gk+1[g j X]
¢
=
Z
gZ ¢fk+1(Z j X)±Z (45)

is the PGFL of fk+1(Z j X). Using (22) it can be
shown that the PGFL of fk+1jk+1(X j Z(k+1)) is

Gk+1jk+1[h] =

±F

±Zk+1
[0,h]

±F

±Zk+1
[0,1]

(46)

where the derivatives of F[g,h] are taken with respect
to g. Given the multitarget measurement model
described at the beginning of Section IIG3, one
derives a closed-form formula for fk+1(Z j X) and then
for F[g,h] [22, pp. 1173—1174]:

F[g,h] = e¸c[g]¡¸ ¢Gk+1jk[h(qD +pDpg)] (47)

where qD(x)
¢
=1¡pD(x) and where

c[g]
¢
=
Z
g(z) ¢ c(z)dz (48)

pg(x)
¢
=
Z
g(z) ¢fk+1(z j x)dz: (49)

To get a closed-form formula for the PHD corrector
equation we must assume that Gk+1jk[h] is Poisson,
i.e., that Gk+1jk[h] = e

¹s[h]¡¹ where s[h] =
R
h(x) ¢

s(x)dx and where Nk+1jk = ¹ and Dk+1jk(x) = ¹s(x).
In this case (47) simplifies to

F[g,h] = exp(¸c[g]¡¸+¹s[h(qD+pDpg)]¡¹):
(50)

Using the product rule and chain rule for functional
derivatives, we derive closed-form formulas for the
numerator and denominator of (46). This yields a
closed-form formula for Gk+1jk+1[h]. The data-updated
PHD Dk+1jk+1(x j Z(k)) is derived in closed form using
functional derivatives and (23):

Dk+1jk+1(x j Z(k+1)) =
±Gk+1jk+1

±x
[1] (51)

=

±F

±Zk+1±x
[0,1]

±F

±Zk+1
[0,1]

: (52)

Our derivation of the corrector step for the CPHD
filter will employ identical reasoning, except that
e¸c[g]¡¸ and e¹s[h]¡¹ will be replaced by IID cluster
processes C(c[g]) and G(s[h]).

III. THE CPHD FILTER

In this section we derive equations for the
predictor step (Section IIIA), corrector step
(Section IIIB), and estimator step (Section IIIC) of
the CPHD filter. Computational issues are addressed
in Section IIID.

A. CPHD Filter Predictor

The CPHD filter presumes the following
multitarget motion model: 1) target motions are
statistically independent; 2) targets can disappear from
the scene with state-dependent probability pS(x); and
3) new targets can appear in the scene independently
of existing targets. Spawning of targets by other
targets cannot be modeled.
From time-step k we have in hand the PHD

Dkjk(x j Z(k)), the expected number of targets Nkjk,
the cardinality distribution pkjk(n j Z(k)), and the
PGF Gkjk(x j Z(k)). We are to specify formulas for
Dk+1jk(x j Z(k)), Nk+1jk, pk+1jk(n j Z(k)), and
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Gk+1jk(x j Z(k)). Abbreviate Dk+1jk(x) =Dk+1jk(x j Z(k)),
pk+1jk(n) = pk+1jk(n j Z(k)), Gk+1jk(x) =Gk+1jk(x j Z(k)),
Dkjk(x) =Dkjk(x j Z(k)), p(n) = pkjk(n j Z(k)), and
G(x) =Gkjk(x j Z(k)). Further assume that:
1) Motion of individual targets: fk+1jk(x j x0) is

the single-target Markov transition density.
2) Disappearance of existing targets: pS,k+1jk(x) is

the probability that any target with state x at time-step
k will survive in time-step k+1, and is hereafter
abbreviated as pS(x).
3) Appearance of completely new targets:

bk+1jk(X) is the likelihood that new targets with
state-set X will enter the scene at time-step k+1, its
PHD is denoted as b(x), and the PGF of its cardinality
distribution pB(n) as B(x).

Closed-form formulas for the predicted PGF
require the following simplifying assumption:

4) IID cluster process multitarget prior: The
PGF of fkjk(X j Z(k)) has the form G[h] =G(s[h])
where G(x) =Gkjk(x) is the PGF of the cardinality
distribution of fkjk(X j Z(k)); where s(x) =N¡1kjk ¢Dkjk(x);
and where s[h] =

R
h(x) ¢ s(x)dx.

Then:

THEOREM 1 (CPHD Filter Predictor) For all x 2
[0,1] and all state-vectors x,

Gk+1jk(x)»= B(x) ¢G(1¡ s[pS]+ s[pS] ¢ x) (53)

Dk+1jk(x) = b(x)

+
Z
pS(x

0) ¢fk+1jk(x j x0) ¢Dkjk(x0)dx0

(54)

Nk+1jk = Bk+1jk + Sk+1jk: (55)

Here Bk+1jk =
R
b(x)dx is the expected number of new

targets and Sk+1jk the expected number of surviving
targets. Furthermore, the cardinality distribution
corresponding to Gk+1jk(x) is

pk+1jk(n)»=
nX
i=0

pB(n¡ i) ¢
1
i!
¢G(i)(1¡ s[pS]) ¢ s[pS]i

(56)
for all nonnegative integers n.

Equation (54) for the predicted PHD is exact since
the same was true for the conventional PHD filter.
Only (53) and (56) require proof, which may be found
in Section IVA.

B. CPHD Filter Single-Sensor Corrector

The CPHD filter presumes the following
multitarget measurement model: 1) a single target
with state x generates, with probability pD(x), at most

one observation; 2) any observation is generated by a
single target; and 3) the false alarm process is an IID
cluster process.
From the predictor step we have in hand the

predicted PHD Dk+1jk(x j Z(k)), the predicted
expected number of targets Nk+1jk, the predicted PGF
Gk+1jk(x j Z(k)), and the predicted cardinality
distribution pk+1jk(n j Z(k)). At time-step k+1 we
collect a new observation-set Zk+1 = fz1, : : : ,zmg
with m elements. We are to specify formulas for
Dk+1jk+1(x j Z(k+1)), Nk+1jk+1, Gk+1jk+1(x j Z(k+1)),
and pk+1jk+1(n j Z(k+1)). We abbreviate Dk+1jk(x) =
Dk+1jk(x j Z(k)), G[h] =Gk+1jk[h j Z(k)], G(x) =
Gk+1jk(x j Z(k)), p(n) = pk+1jk(n j Z(k)), Dk+1jk+1(x) =
Dk+1jk+1(x j Z(k+1)), pk+1jk+1(n) = pk+1jk+1(n j Z(k+1)),
Gk+1jk+1(x) =Gk+1jk+1(x j Z(k+1)), and Gk+1jk+1[h] =
Gk+1jk+1[h j Z(k+1)].
Further,

1) Single-target measurement generation:
Lk+1,z(x) = fk+1(z j x) is the sensor likelihood function,
hereafter abbreviated as Lz(x).
2) Probability of detection: pD,k+1(x) is the

probability that an observation will be collected at
time-step k+1 from a target with state x. Hereafter
we abbreviate pD(x) = pD,k+1(x) and qD(x) = 1¡
pD(x).
3) IID cluster process false alarms: at time-step

k+1 the sensor collects false alarms whose spatial
distribution is given by the probability density ck+1(z)
and whose cardinality distribution is given by ·k+1(m),
hereafter abbreviated as c(z) and ·(m). The PGF of
·k+1(m) is Ck+1(z), hereafter abbreviated as C(z).

As was the case with the conventional PHD
filter, we cannot derive closed-form formulas for
the corrector step without making an additional
simplifying assumption:

4) IID cluster process multitarget prior: the
predicted multitarget distribution fk+1jk(X j Z(k)) is
approximately an IID cluster process with PGFL
G[h] =G(s[h]) where G(x) is the PGF of the predicted
cardinality distribution p(n) = pk+1jk(n); where
s[h]

¢
=
R
h(x) ¢ s(x)dx; where s(x) ¢=N¡1k+1jk ¢Dk+1jk(x);

and where

Nk+1jk =
Z
Dk+1jk(x)dx=G

(1)(1): (57)

The last equation results from

Dk+1jk(x) =
·
±

±x
G(s[h])

¸
h=1

(58)

=
·
G(1)(s[h]) ¢ ±

±x
s[h]

¸
h=1

(59)

=G(1)(1) ¢ s(x) (60)
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and thus Nk+1jk =
R
Dk+1jk(x)dx=G

(1)(1). The ith
derivatives of G(x) and of C(z) are G(i)(x) and C(i)(z),
respectively.
Given this we have the following theorem.

THEOREM 2 (CPHD Filter Corrector) The corrector
step for the CPHD filter is given by the following
approximate equalities. For all x 2 [0,1] and all
state-vectors x,

Gk+1jk+1(x)
»=
Pm

j=0 x
j ¢C(m¡j)(0) ¢ Ĝ(j)(xs[qD]) ¢¾j(Zk+1)Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)

(61)

Dk+1jk+1(x)
»= LZk+1 (x) ¢Dk+1jk(x) (62)

where for all x,

LZ(x)
¢
=

Pm
j=0C

(m¡j)(0) ¢ Ĝ(j+1)(s[qD]) ¢¾j(Z)Pm
i=0C

(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Z)

¢ (1¡pD(x))+pD(x) ¢
X
z2Z

Lz(x)
c(z)

¢
Pm¡1
j=0 C

(m¡j¡1)(0) ¢ Ĝ(j+1)(s[qD]) ¢¾j(Z ¡fzg)Pm
i=0C

(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Z)
(63)

and where for any measurement-set Z = fz1, : : : ,zmg
with jZj=m and for all x 2 [0,1],

¾i(Z)
¢
=¾m,i

μ
Dk+1jk[pDLz1 ]

c(z1)
, : : : ,

Dk+1jk[pDLzm]
c(zm)

¶
(64)

Ĝ(i)(x)
¢
=
G(i)(x)
G(1)(1)i

(65)

where ¾m,i(y1, : : : ,ym) is the elementary symmetric
function of degree i in y1, : : : ,ym.

The proof can be found in Section IVB. Recall
that ¾m,i(y1, : : : ,ym) is defined as

¾m,i(y1, : : : ,ym) =
X

0·j1<¢¢¢<ji·m
yj1 ¢ ¢ ¢yji (66)

=
X

SμU,jSj=i

Y
j2S
yj: (67)

Thus ¾m,1(y1, : : : ,ym) = y1 + ¢ ¢ ¢+ ym, ¾m,m(y1, : : : ,ym)
= y1 ¢ ¢ ¢ym, and by convention ¾m,0(y1, : : : ,ym) = 1
identically. Note that ¾m,i(ay1, : : : ,aym) = a

i ¢
¾m,i(y1, : : : ,ym). Also, note that

mY
j=1

(1+ yj) =
mX
i=0

¾m,i(y1, : : : ,ym): (68)

Caution: The notation Ĝ(i)(x) requires cautious
handling. Note that

dj

dxj
Ĝ(i)(x) = Ĝ(i+j)(x) ¢G(1)(1)j (69)

and not
dj

dxj
Ĝ(i)(x) = Ĝ(i+j)(x): (70)

For this reason we write

Ĝ(i)(j)(x)
¢
=
dj

dxj
Ĝ(i)(x): (71)

Equations (61) and (62) are approximate in
the sense that they depend on the assumption that
fk+1jk(X j Z(k)) is approximately an IID cluster
process. It is difficult to predict on an a priori basis
conditions under which this assumption will be
valid. For example, the Poisson assumption which
underlies the corrector equation for the PHD filter
implicitly depends on an assumption of “high SNR.”
Nevertheless, at least in basic simulations the PHD
filter has proved to be effective in scenarios that, to
the naked eye, seem to have rather small SNRs. The
actual meaning of the IID cluster process assumption
will have to be determined by experiment.
Closed-form formulas for the derivatives G(i)k+1jk+1(x)

and the cardinality distribution pk+1jk+1(n j Z(k))
are given in (89) and (90). The expected number of
targets is

Nk+1jk+1 =G
(1)
k+1jk+1(1) (72)

»=
Pm
j=0C

(m¡j)(0) ¢®j ¢¾j(Zk+1)Pm
i=0C

(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)
(73)where

®j
¢
=j ¢ Ĝ(j)(s[qD])

+ Ĝ(j+1)(s[qD]) ¢ s[qD] ¢G(1)(1) (74)

= j ¢ Ĝ(j)(s[qD])
+ Ĝ(j+1)(s[qD]) ¢Dk+1jk[qD]: (75)

The following shows that (61)—(65) generalize the
PHD filter corrector equations introduced in [22].

COROLLARY 1 (PHD Filter is Special Case of CPHD
Filter) Suppose that C(z) = e¸z¡¸ and G(x) = e¹x¡¹

are Poisson with ¹=G(1)(1). Then the CPHD corrector
equations, (61)—(65), reduce to the usual PHD filter
corrector equations (37) and (38).

The proof can be found in Section IVC.
The following describes a special case in which

the CPHD corrector equations become exact rather
than approximate. Suppose that we know a priori that
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there is at most one target in the scene. Then there is a
0· ! · 1 and a probability density f(x) such that

fk+1jk(X j Z(k)) =

8><>:
1¡! if X =Ø

! ¢f(x) if X = fxg
0 if jXj ¸ 2

: (76)

It follows that that the PGFL G[h] =Gk+1jk[h] of
fk+1jk(X j Z(k)) is

G[h] =
Z
hX ¢fk+1jk(X j Z(k))±X (77)

= fk+1jk(X j Z(k))

+
Z
h(x) ¢fk+1jk(fxg j Z(k))dx (78)

= 1¡!+! ¢f[h] (79)

where f[h] =
R
h(x) ¢fk+1jk(x)dx. The PGF of the

cardinality distribution of fk+1jk(X j Z(k)) is, therefore,
G(x) =G[x] = 1¡!+!x. Thus G[h] =G(f[h]) and
Nk+1jk =G

(1)(1) = !. In this case the assumption that
G[h] is an IID cluster process is exact and we get
Corollary 2.

COROLLARY 2 (CPHD and IPDA Filters) Suppose
that G(x) = 1¡!+!x. Then (61)—(65) reduce to

Gk+1jk+1(x) = 1¡!k+1jk+1 +!k+1jk+1 ¢ x (80)

Dk+1jk+1(x) = LZk+1 (x) ¢Dk+1jk(x) (81)

Nk+1jk+1 = !k+1jk+1 (82)

where

!k+1jk+1 =

0@ C(m)(0) ¢! ¢ (1¡ s[pD])

+C(m¡1)(0) ¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

1A
0@ C(m)(0) ¢ (1¡!s[pD])

+C(m¡1)(0) ¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

1A
(83)

and

LZ(x) =
C(m)(0)0@ C(m)(0) ¢ (1¡!s[pD])

+C(m¡1)(0) ¢Pw2Z
Dk+1jk[pDLw]

c(w)

1A
¢ (1¡pD(x))+pD(x)

¢
C(m¡1)(0) ¢

μP
z2Z

Lz(x)
c(z)

¶
0@ C(m)(0) ¢ (1¡!s[pD])

+C(m¡1)(0) ¢Pw2Z
Dk+1jk[pDLw]

c(w)

1A
:

(84)

Furthermore,

pk+1jk+1(0) = 1¡!k+1jk+1 (85)

pk+1jk+1(1) = !k+1jk+1: (86)

Thus Gk+1jk+1[h] =Gk+1jk+1(f[h]) where
Dk+1jk+1(x) =Nk+1jk+1 ¢f(x). The proof may be found
in Section IVD. Equations (80)—(86) generalize a
previously known single-target detect-and-track filter,
the IPDA filter [3].
In Corollary 2, suppose that 1) probability

of detection pD(x) = pD is constant, and 2) no
observations are collected (Zk+1 = Ø). Then (82) and
(83) reduce to

Nk+1jk+1 =
(1¡pD) ¢!
1¡! ¢pD

(87)

which is equation (1.1) of Erdinc et al. We conclude:
The CPHD filter is general enough to include the
higher order information identified by Erdinc et al. as
necessary for increasing the performance of the PHD
filter.

C. CPHD Filter State Estimator

We noted in the Introduction that the PHD’s EAP
estimate Nkjk of the posterior expected number of
targets n̄ can be both unstable and inaccurate under
lower SNR conditions since n̄ itself will be unstable.
We further noted that the MAP estimate

n̂kjk
¢
=argsup

n
pkjk(n j Z(k)) (88)

should be more stable and accurate. Its computation
requires a closed-form formula for pkjk(n j Z(k)). This
can be derived from (11).

THEOREM 3 (CPHD Estimator) Under the conditions
just stated,

G(n)
k+1jk+1(x) =

0@ Pm

i=0

Pn

j=0Cn,j ¢C(m¡i)(0) ¢¾i(Zk+1)

¢ i!
(i¡ j)! ¢ x

i¡j ¢ Ĝ(i)(n¡j)(xs[qD]) ¢ s[qD]n¡j

1A
Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)

(89)
and

pk+1jk+1(n) =

0@
Pm
j=0C

(m¡j)(0) ¢¾j(Zk+1)

¢ 1
(n¡ j)! ¢ Ĝ

(j)(n¡j)(0) ¢ s[qD]n¡j

1A
Pm
i=0C

(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)
:

(90)

The proof may be found in Section IVE. Note
that i! = ¡ (i+1) =§1 for all integers i < 0 where
¡ (x) is the gamma function, so that any terms in the
summation in the numerators of (89) and (90) with
i > n vanish. The notation Ĝ(j)(i) was defined in (71).
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D. Computability of the CPHD Filter

It is evident that the CPHD filter will be more
computationally intensive than the PHD filter. But
how much more? The cardinality distributions
pkjk(n j Z(k)) and pkjk(n j Z(k)) can be nonvanishing
for all n¸ 0. Consequently, the CPHD filter will be
inherently computationally intractable in the event
that these distributions have heavy tails. Suppose on
the other hand that these distributions vanish, at least
approximately, for all n larger than some largest value
º. From (53) we see that this is the same thing as
saying that their PGFs are polynomials of degrees not
exceeding º. What is the computability of the CPHD
filter in this case?
Consider the corrector step first. Abbreviate

G(x) =Gk+1jk(x) and suppose that degG(x)· º. Then
degG(i)(x)· º¡ i. Examining (61) we find that

degGk+1jk+1(x)· deg
mX
i=0

xi ¢C(m¡i)(0)

¢ Ĝ(i)(xs[qD]) ¢¾i(Zk+1) (91)

·max
i
fdegxi+degĜ(i)(xs[qD])g

(92)

·max
i
fi+ º¡ ig= º: (93)

Consequently, the corrector step will not increase
computational requirements due to an increase in the
maximum possible number of targets.
As for the predictor step, abbreviate G(x) =Gkjk(x).

Then from (53) we have

degGk+1jk(x) = degfB(x) ¢G(1¡ s[pS]+ s[pS]x])g
(94)

= degB(x) +degG(1¡ s[pS]+ s[pS]x])
(95)

· ºB + º (96)

where vB is the maximum number of new targets.
This will tend to increase degGk+1jk(x). Thus the
computability of the CPHD filter is partially limited
by what model of target appearance we adopt.
Beyond these contributing effects, the primary

source of computational complexity will be the
sums of the elementary symmetric functions
¾1(Z), : : : ,¾m(Z) in the corrector step. These sums are
not as combinatorially daunting as they might at first
seem. The reason is that ¾m,i(x1, : : : ,xm) for i= 1, : : : ,m
can be computed with order m2 complexity using
the following double recursion on j = 1, : : : ,m and
i= 1, : : : ,j [18, p. 40]:

¾j,1(x1, : : : ,xm) = x1 + ¢ ¢ ¢+ xj (97)

¾j,i(x1, : : : ,xm) = ¾j¡1,i(x1, : : : ,xm¡1)

+ xj ¢¾j¡1,i¡1(x1, : : : ,xm¡1): (98)

Consequently, taken as a whole the CPHD filter
will have computational complexity O(n ¢m3). Vo,
Vo, and Cantoni [51] have shown that this can be
somewhat reduced to O(n ¢m2 ¢ log2m).

IV. MATHEMATICAL PROOFS

A. Proof of CPHD Predictor

From (40) we know that the PGFL Gk+1jk[h] of
fk+1jk(X j Z(k)) may be expressed in terms of the PGFL
G[h] =Gkjk[h] of fkjk(X j Z(k)) as

Gk+1jk[h] = eh ¢G[(1¡pS +pSph) ¢ bh] (99)

where ph, bh, eh are as in (40)—(43). Since we have
assumed that no targets spawn other targets (bh(x

0) = 1
identically) and that G[h] =G(s[h]) this becomes

Gk+1jk[h] = eh ¢G(s[1¡pS +pSph]): (100)

By (17) the PGF Gk+1jk(x) of the cardinality
distribution pk+1jk(n) of fk+1jk(X j Z(k)) is

Gk+1jk(x) =Gk+1jk[x] = ex ¢G(s[1¡pS +pSpx])
(101)

where

px(x
0) = x ¢

Z
fk+1jk(x j x0)dx= x (102)

ex =
Z
xX ¢ bk+1jk(X)±X (103)

=
1X
n=0

xn ¢
Z
jXj=n

bk+1jk(X)±X (104)

=
1X
n=0

xn ¢ bk+1jk(n) = B(x): (105)

Thus

Gk+1jk(x) = B(x) ¢G(s[1¡pS + xpS]): (106)

To determine pk+1jk(n) first note from the chain
rule and general product rule for ordinary derivatives,
(14), that

G(n)k+1jk(x) =
nX
i=0

Cn,i ¢
dn¡i

dxn¡i
B(x)

¢ d
i

dxi
G(s[1¡pS +pSx]) (107)

=
nX
i=0

Cn,i ¢B(n¡i)(x)

¢G(i)(s[1¡pS +pSx]) ¢ s[pS]i: (108)
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Consequently, from (11)

pk+1jk(n) =
1
n!
G(n)k+1jk(0) (109)

=
1
n!

nX
i=0

Cn,i ¢B(n¡i)(0) ¢G(i)(s[1¡pS]) ¢ s[pS]i

(110)

=
nX
i=0

1
(n¡ i)!B

(n¡i)(0) ¢ 1
i!
G(i)(s[1¡pS]) ¢ s[pS]i

(111)

=
nX
i=0

pB(n¡ i) ¢
1
i!
G(i)(s[1¡pS]) ¢ s[pS]i

(112)

where pB(j) = (1=j!)b
(j)(0) is the distribution of the

number of new targets.

B. Proof of CPHD Corrector

We first derive the formula for the PGF Gk+1jk+1(x)
and then, following that, the formula for the PHD
Dk+1jk+1(x). From (46) we know that the PGFL of the
posterior distribution fk+1jk+1(X j Z(k+1)) is

Gk+1jk+1[h] =

±F

±Zk+1
[0,h]

±F

±Zk+1
[0,1]

: (113)

By (47) we can replace the Poisson false alarm
process e¸c[g]¡¸ by the IID cluster false alarm process
C(c[g]) to get

F[g,h]
¢
=C(c[g]) ¢G(s[h(qD+pDpg)]): (114)

Begin with the numerator of (113). First note that

±i

±z1 ¢ ¢ ¢±zi
C(c[g]) = C(i)(c[g]) ¢ c(z1) ¢ ¢ ¢c(zi)

(115)
and that

±i

±z1 ¢ ¢ ¢±zi
G(s[h(qD+pDpg)])

=G(i)(s[h(qD +pDpg)]) ¢ s[hpDLz1 ] ¢ ¢ ¢s[hpDLzi ]:
(116)

The second equation follows from the linear
functional rule for functional derivatives, (24),

±

±z
s[h(qD +pDpg)] = s[hpD

±

±z
pg] = s[hpDLz]

(117)
since

±

±z
pg(x) =

±

±z

Z
g(y) ¢Ly(x)dy (118)

=
Z
±z(y) ¢Ly(x)dy= Lz(x): (119)

Using the general product rule for functional
derivatives, (26), the functional derivative of F[g,h]
with respect to the first variable g with respect to a
measurement-set Z is

±F

±Z
[g,h] =

X
WμZ

±

±(Z ¡W)C(c[g])

¢ ±
±W

G(s[h(qD+pDpg)]) (120)

=
X
WμZ

C(jZ¡Wj)(c[g])

¢
Ã Y
z2Z¡W

c(z)

!

¢G(jWj)(s[h(qD +pDpg)])

¢
ÃY
z2W

s[hpDLz]

!
(121)

=

ÃY
z2Z
c(z)

!
¢
X
WμZ

C(jZ¡Wj)(c[g])

¢G(jWj)(s[h(qD +pDpg)])

¢
ÃY
z2W

s[hpDLz]
c(z)

!
(122)

=

ÃY
z2Z
c(z)

!
¢
mX
i=1

C(m¡i)(c[g])

¢G(i)(s[h(qD +pDpg)])

¢
X

WμZ,jWj=i

ÃY
z2W

s[hpDLz]
c(z)

!
(123)

=

ÃY
z2Z
c(z)

!
¢
mX
i=1

C(m¡i)(c[g])

¢G(i)(s[h(qD +pDpg)])

¢¾m,i
μ
s[hpDLz1 ]

c(z1)
, : : : ,

s[hpDLzm]
c(zm)

¶
(124)

where ¾m,i(x1, : : : ,xm) is as defined in (66) and (67).
Substituting g = 0 into (124) we get

±F

±Z
[0,h] =

ÃY
z2Z
c(z)

!
¢
mX
i=1

C(m¡i)(0) ¢G(i)(s[hqD])

¢¾m,i
μ
s[hpDLz1 ]

c(z1)
, : : : ,

s[hpDLzm]
c(zm)

¶
:

(125)
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Substituting h= 1 into (125), we get

±F

±Z
[0,1] =

ÃY
z2Z
c(z)

!
¢
mX
i=1

C(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm]
c(zm)

¶
: (126)

Substituting (125) and (126) into (113), we find that
the posterior PGFL is

Gk+1jk+1[h] =

0@
Pm
j=1C

(m¡j)(0) ¢G(j)(s[hqD])

¢¾m,j
μ
s[hpDLz1 ]

c(z1)
, : : : ,

s[hpDLzm]
c(zm)

¶1A
0@

Pm
i=1C

(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm]
c(zm)

¶1A
:

(127)
By (17) the PGF of the posterior cardinality
distribution pk+1jk+1(n) is, as claimed,

Gk+1jk+1(x) =Gk+1jk+1[x] (128)

=

0@
Pm

j=1 x
j ¢C(m¡j)(0) ¢G(j)(xs[qD])

¢¾m,j
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
0@

Pm

i=1C
(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
(129)

=

0@
Pm

j=1 x
j ¢C(m¡j)(0) ¢ Ĝ(j)(xs[qD])

¢¾m,j
μ
Dk+1jk[pDLz1 ]

c(z1)
, : : : ,

Dk+1jk[pDLzm ]

c(zm)

¶1A
0@

Pm

i=1C
(m¡i)(0) ¢ Ĝ(i)(s[qD])

¢¾m,i
μ
Dk+1jk[pDLz1 ]

c(z1)
, : : : ,

Dk+1jk[pDLzm ]

c(zm)

¶1A
(130)

=

Pm

j=1 x
j ¢C(m¡j)(0) ¢ Ĝ(j)(xs[qD]) ¢¾j(Z)Pm

i=1C
(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Z)

(131)

where Ĝ(i)(x) =G(i)(x)=G(1)(1)i; where Dk+1jk(x) =
G(1)(1) ¢ s(x) by (60); and where ¾j(Z) are defined as
in (64).
Now turn to the posterior PHD Dk+1jk+1(x). By

(51) it is given by

Dk+1jk+1(x) =

±F

±Zk+1±x
[0,1]

±F

±Zk+1
[0,1]

(132)

where (±=±Z)F[g,h] is taken with respect to variable g
and (±=±x)F[g,h] with respect to variable h.

By the linear functional rule, (24), the product
rule, (25), and the chain rule, (27),

±F

±x
[g,h] = C(c[g]) ¢ ±

±x
G(s[h(qD +pDpg)])

(133)

= C(c[g]) ¢G(1)(s[h(qD +pDpg)])
¢ (qD(x)+pD(x)pg(x)) ¢ s(x): (134)

Thus from the general product rule for functional
derivatives, (26),

±F

±Z±x
[g,h] =

X
WμZ

±

±(Z ¡W)C(c[g])

¢ ±

±W±x
G(s[h(qD+pDpg)]) (135)

and thus

=
X
WμZ

C(jZ¡Wj)(c[g]) ¢
Ã Y
z2Z¡W

c(z)

!

¢

0B@
P
VμW

±

±(W¡V)G
(1)(s[h(qD +pDpg)])

¢ ±
±V
(qD(x) +pD(x)pg(x))

1CA ¢ s(x):
(136)

Since qD(x) +pD(x)pg(x) is an affine functional in
g, (±=±V)(qD(x)+pD(x)pg(x)) = 0 unless V =Ø or
V = fzg for some z. Thus we get
±F

±Z±x
[g,h]

=
X
WμZ

C(jZ¡Wj)(c[g]) ¢
Ã Y
z2Z¡W

c(z)

!

¢

0BBBBBBB@

±

±W
G(1)(s[h(qD +pDpg)])

¢(qD(x) +pD(x)pg(x))

+
P

z2W
±

±(W¡ z)G
(1)(s[h(qD +pDpg)])

¢ ±
±z
(qD(x)+pD(x)pg(x))

1CCCCCCCA
¢ s(x)

(137)and so

=
X
WμZ

C(jZ¡Wj)(c[g]) ¢
Ã Y
z2Z¡W

c(z)

!

¢

0BBBBB@
G(1+jWj)(s[h(qD+pDpg)])

¢¡Qz2W s[hpDLz]
¢ ¢ (qD(x) +pD(x)pg(x))

+
P
z2WG

(jWj)(s[h(qD+pDpg)])

¢
³Q

w2W,w6=z s[hpDLw]
´
¢pD(x)Lz(x)

1CCCCCA ¢ s(x)
(138)
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and so

=
X
WμZ

C(jZ¡Wj)(c[g]) ¢
Ã Y
z2Z¡W

c(z)

!

¢G(1+jWj)(s[h(qD +pDpg)])

¢
ÃY
z2W

s[hpDLz]

!
¢ (qD(x) +pD(x)pg(x)) ¢ s(x)

+
X
WμZ

C(jZ¡Wj)(c[g])

¢
Ã Y
z2Z¡W

c(z)

!

¢
Ã P

z2WG
(jWj)(s[h(qD+pDpg)])

¢
³Q

w2W,w6=z s[hpDLw]
´
¢pD(x)Lz(x)

!
¢ s(x):

(139)
Setting g = 0 and h= 1,

±F

±Z±x
[0,1] =

X
WμZ

C(jZ¡Wj)(0) ¢
Ã Y
z2Z¡W

c(z)

!

¢G(1+jWj)(s[qD]) ¢
ÃY
z2W

s[pDLz]

!

¢ qD(x) ¢ s(x)

+
X
WμZ

C(jZ¡Wj)(0) ¢
Ã Y
z2Z¡W

c(z)

!

¢
ÃX
z2W

G(jWj)(s[qD]) ¢
Ã Y
w2W,w6=z

s[pDLw]

!!

¢pD(x) ¢Lz(x) ¢ s(x) (140)

and so

=

ÃY
z2Z
c(z)

!
¢
mX
i=0

C(m¡i)(0) ¢G(i+1)(s[qD])

¢
X

WμZ,jWj=i

ÃY
w2W

s[pDLw]
c(w)

!
¢ qD(x) ¢ s(x)

+

ÃY
z2Z
c(z)

!
¢
mX
i=0

C(m¡i)(0) ¢G(i)(s[qD])

¢
X

WμZ,jWj=i

ÃX
z2Z

Lz(x) ¢ 1W(z)
s[pDLz]

!

¢
ÃY
w2W

s[pDLw]
c(w)

!
¢pD(x) ¢ s(x)

and thus from (67)

=

ÃY
z2Z
c(z)

!
¢
mX
i=0

C(m¡i)(0) ¢G(i+1)(s[qD])

¢¾m,j
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm]
c(zm)

¶
¢qD(x) ¢ s(x)

+

ÃY
z2Z
c(z)

!
¢
mX
i=0

C(m¡i)(0) ¢G(i)(s[qD])

¢
X

WμZ,jWj=i

ÃX
z2Z

Lz(x) ¢ 1W(z)
s[pDLz]

!

¢
ÃY
w2W

s[pDLw]
c(w)

!
¢pD(x) ¢ s(x): (141)

Substituting (141) and (126) into (132) and
canceling the factor

Q
z2Z c(z) in the numerator and

denominator, we find that the posterior PHD is

Dk+1jk+1(x) =

0@
Pm

j=0C
(m¡j)(0) ¢G(1+j)(s[qD])

¢¾m,j
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
0@

Pm

i=0C
(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
¢ qD(x) ¢ s(x) +

X
z2Z

pD(x)Lz(x)s(x)
s[pDLz]

¢

0@
Pm

j=0C
(m¡j)(0) ¢G(j)(s[qD])

¢P
WμZ,jWj=j 1W(z) ¢

μQ
z2W

s[pDLz]
c(z)

¶1A
0@

Pm

i=0C
(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
(142)and so

=

0@
Pm
j=0C

(m¡j)(0) ¢G(1+j)(s[qD])

¢¾m,j
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm]
c(zm)

¶1A
0@

Pm
i=0C

(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm]
c(zm)

¶1A
¢ qD(x) ¢ s(x)+

X
z2Z

pD(x)Lz(x)s(x)
c(z)

¢

0@
Pm
j=1C

(m¡j)(0) ¢G(j)(s[qD])

¢PVμZ¡z,jVj=j¡1
Q
w2V

s[pDLw]
c(w)

1A
0@

Pm
i=0C

(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm]
c(zm)

¶1A
(143)
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or

Dk+1jk+1(x)

=

0@
Pm

j=0C
(m¡j)(0) ¢G(1+j)(s[qD])

¢¾m,j
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
0@

Pm

i=0C
(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
¢ qD(x) ¢ s(x) +

X
z2Z

pD(x)Lz(x)s(x)
s[pDLz]

¢ s[pDLz]
c(z)

¢

0@Pm¡1
j=0 C

(m¡j¡1)(0) ¢G(j+1)(s[qD])

¢P
VμZ¡z,jVj=j

Q
w2V

s[pDLw]
c(w)

1A
0@

Pm

i=0C
(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
(144)

=

0@
Pm

j=0C
(m¡j)(0) ¢G(1+j)(s[qD])

¢¾m,j
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
0@

Pm

i=0C
(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
¢ qD(x) ¢ s(x) +

X
z2Z

pD(x)Lz(x)s(x)
c(z)

¢

0B@
Pm¡1

j=0 C
(m¡j¡1)(0) ¢G(j+1)(s[qD])

¢¾m¡1,j
Ã
s[pDLz1 ]

c(z1)
, : : : ,

ds[pDLz]
c(z)

, : : : ,
s[pDLzm ]

c(zm)

!1CA
0@

Pm

i=0C
(m¡i)(0) ¢G(i)(s[qD])

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
(145)

where ¾m¡1,j(x1, : : : , bxi, : : : ,xm) indicates that the ith
variable is to be struck out of the list x1, : : : ,xi, : : : ,xm.
Now recall from (12) that the prior PHD is

Dk+1jk(x) =
±G

±x
[1] =G(1)(1) ¢ s(x): (146)

Thus if we define Ĝ(i)(x)
¢
=G(i)(x)=G(1)(1)i we get

Dk+1jk+1(x)

=

0@
Pm

j=0C
(m¡j)(0) ¢ Ĝ(1+j)(s[qD])

¢¾m,j
μ
Dk+1jk[pDLz1 ]

c(z1)
, : : : ,

Dk+1jk[pDLzm ]

c(zm)

¶1A
0@

Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD])

¢¾m,i
μ
Dk+1jk[pDLz1 ]

c(z1)
, : : : ,

Dk+1jk[pDLzm ]

c(zm)

¶1A
¢ qD(x) ¢Dk+1jk(x) +

X
z2Z

pD(x)Lz(x)Dk+1jk(x)

c(z)

¢

0BBBB@
Pm¡1

j=0 C
(m¡j¡1)(0) ¢ Ĝ(j+1)(s[qD])

¢¾m¡1,j

0BB@
Dk+1jk[pDLz1 ]

c(z1)
, : : : ,

dDk+1jk[pDLz]

c(z)
,

: : : ,
Dk+1jk[pDLzm ]

c(zm)

1CCA
1CCCCA

0@
Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD])

¢¾m,i
μ
Dk+1jk[pDLz1 ]

c(z1)
, : : : ,

Dk+1jk[pDLzm ]

c(zm)

¶1A
(147)

or
Dk+1jk+1(x) = LZ(x) ¢Dk+1jk(x) (148)

where

LZ(x) =

Pm
j=0C

(m¡j)(0) ¢ Ĝ(j+1)(s[qD]) ¢¾j(Z)Pm
i=0C

(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Z)

¢ (1¡pD(x))+pD(x) ¢
X
z2Z

Lz(x)
c(z)

¢
Pm¡1

j=0 C
(m¡j¡1)(0) ¢ Ĝ(j+1)(s[qD]) ¢¾j(Z ¡fzg)Pm
i=0C

(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Z)
(149)

where for any Z = fz1, : : : ,zmg with jZj=m and any
m¸ 1,

¾i(Z)
¢
=¾m,i

μ
Dk+1jk[pDLz1 ]

c(z1)
, : : : ,

Dk+1jk[pDLzm]
c(zm)

¶
:

(150)
This completes the proof.

C. Proof of Corollary 1

In (61)—(65) we are to assume that C(z) = e¸z¡¸

and G(x) = e¹x¡¹ where ¹=Nk+1jk is the predicted
expected number of targets and ¹s(x) =Dk+1jk(x)
is the predicted PHD. Noting that C(i)(0) = ¸i ¢ e¡¸
and G(i)(s[qD]) = ¹

i ¢ e¹s[pD]¡¹ and substituting these
quantities into (147), we get

Dk+1jk+1(x)

=

0@
Pm

j=0¸
m¡j¹j+1

¢¾m,j
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
0@

Pm

i=0¸
m¡i¹i

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
¢ qD(x) ¢ s(x) +

X
z2Z

pD(x) ¢Lz(x) ¢ s(x)
c(z)

¢

0B@
Pm¡1

j=0 ¸
m¡j¡1¹j+1

¢¾m¡1,j
Ã
s[pDLz1 ]

c(z1)
, : : : ,

ds[pDLz]
c(z)

, : : : ,
s[pDLzm ]

c(zm)

!1CA
0@

Pm

i=0¸
m¡i¹i

¢¾m,i
μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶1A
(151)
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=

Pm

j=0¾m,j

μ
¹s[pDLz1 ]

¸c(z1)
, : : : ,

¹s[pDLzm ]

¸c(zm)

¶
Pm

i=0¾m,i

μ
s[pDLz1 ]

c(z1)
, : : : ,

s[pDLzm ]

c(zm)

¶
¢ qD(x) ¢¹s(x) +

X
z2Z

pD(x) ¢Lz(x) ¢¹s(x)
¸c(z)

¢

Pm¡1
j=0 ¾m¡1,j

0B@
¹s[pDLz1 ]

¸c(z1)
, : : : ,

d¹s[pDLz]
¸c(z)

,

: : : ,
¹s[pDLzm ]

¸c(zm)

1CA
Pm

i=0¾m,i

μ
¹s[pDLz1 ]

¸c(z1)
, : : : ,

¹s[pDLzm ]

¸c(zm)

¶ : (153)

From the identity for elementary symmetric functions,
(68), this becomes

Dk+1jk+1(x) = qD(x) ¢¹s(x)

+
X
z2Z

pD(x) ¢Lz(x) ¢¹s(x)
¸c(z)

¢ 1

1+
¹s[pDLz]
¸c(z)

(154)

= qD(x) ¢¹s(x)

+
X
z2Z

pD(x) ¢Lz(x) ¢¹s(x)
¸c(z) +¹s[pDLz]

: (155)

Substituting ¹s(x) =Dk+1jk(x) and qD(x) = 1¡pD(x)
yields the claimed result.

D. Proof of Corollary 2

From (53) we have

Gk+1jk+1(x) =

Pm

j=0 x
j ¢C(m¡j)(0) ¢ Ĝ(j)(xs[qD]) ¢¾j(Zk+1)Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)

(156)

=

0B@ C(m)(0) ¢G(xs[qD])
+x ¢C(m¡1)(0) ¢ Ĝ(1)(xs[qD])

¢¾1(Zk+1)

1CA
0B@

C(m)(0) ¢G(s[qD])

+C(m¡1)(0) ¢ Ĝ(1)(s[qD])
¢¾1(Zk+1)

1CA
(157)

=

Ã C(m)(0) ¢ (1¡!+!xs[qD])

+x ¢C(m¡1)(0) ¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

!
Ã C(m)(0) ¢ (1¡!+!s[qD])

+C(m¡1)(0) ¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

!
(158)

=

0BBB@
C(m)(0) ¢ (1¡!)

+x ¢

0BB@
C(m)(0) ¢! ¢ (1¡ s[pD])

+C(m¡1)(0)

¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

1CCA
1CCCA

Ã
C(m)(0) ¢ (1¡!s[pD])

+C(m¡1)(0) ¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

!
(159)

= 1¡!k+1jk+1 +!k+1jk+1 ¢ x (160)
where, as claimed,

!k+1jk+1 =

0@ C(m)(0) ¢! ¢ (1¡ s[pD])

+C(m¡1)(0) ¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

1A
0@ C(m)(0) ¢ (1¡!s[pD])

+C(m¡1)(0) ¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

1A
(161)

1¡!k+1jk+1 =
C(m)(0) ¢ (1¡!)0@ C(m)(0) ¢ (1¡!s[pD])

+C(m¡1)(0) ¢Pz2Zk+1
Dk+1jk[pDLz]

c(z)

1A
:

(162)
As for the PHD, from (63) we get

LZ(x) =

Pm
j=0C

(m¡j)(0) ¢ Ĝ(j+1)(s[qD]) ¢¾j(Z)Pm
i=0C

(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Z)

¢ (1¡pD(x))+pD(x) ¢
X
z2Z

Lz(x)
c(z)

¢

Ã Pm¡1
j=0 C

(m¡j¡1)(0)

¢Ĝ(j+1)(s[qD]) ¢¾j(Z ¡fzg)

!
Ã Pm

i=0C
(m¡i)(0)

¢Ĝ(i)(s[qD]) ¢¾i(Z)

! (163)

=
C(m)(0)0@ C(m)(0) ¢ (1¡!+!s[qD])

+C(m¡1)(0) ¢Pz2Z
Dk+1jk[pDLz]

c(z)

1A
¢ (1¡pD(x))+pD(x)

¢
C(m¡1)(0) ¢

μP
z2Z

Lz(x)
c(z)

¶
0@ C(m)(0) ¢ (1¡!+!s[qD])

+C(m¡1)(0) ¢Pw2Z
Dk+1jk[pDLw]

c(w)

1A
(164)

as claimed.
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E. Proof of CPHD Estimator

From (61)

Gk+1jk+1(x)
»=
Pm

j=0 x
j ¢C(m¡j)(0) ¢ Ĝ(j)(xs[qD]) ¢¾j(Zk+1)Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)

:

(165)
Using the general product rule

dn(G1G2)
dxn

(x) =
nX
j=0

Cn,j ¢
dn¡jG1
dxn¡j

(x) ¢ d
jG2
dxj

(x)

(166)we get

G(n)
k+1jk+1(x)

=

0@
Pm

j=0C
(m¡j)(0) ¢¾j(Zk+1)

¢Pn

e=0Cn,e ¢
μ
de

dxe
xj
¶
¢
μ
dn¡e

dxn¡e
Ĝ(j)(xs[qD])

¶1A
Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)

=

0@ Pm

j=0C
(m¡j)(0) ¢¾j(Zk+1) ¢

Pn

e=0Cn,e

¢ j!
(j¡ e)! ¢ x

j¡e ¢ Ĝ(j)(n¡e)(xs[qD]) ¢ s[qD]n¡e

1A
Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)

:

(167)

After substitution of x= 0, only those terms in the
numerator with j = e survive and so we get, as
claimed,

pk+1jk+1(n) =
1
n!
G(n)k+1jk+1(0)

=
1
n!
¢

Ã Pm
j=0C

(m¡j)(0) ¢¾j(Zk+1)
¢Cn,j ¢ j! ¢ Ĝ(j)(n¡j)(0) ¢ s[qD]n¡j

!
Pm

i=0C
(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)

(168)

=

0@
Pm
j=0C

(m¡j)(0) ¢¾j(Zk+1)

¢ 1
(n¡ j)! ¢ Ĝ

(j)(n¡j)(0) ¢ s[qD]n¡j

1A
Pm
i=0C

(m¡i)(0) ¢ Ĝ(i)(s[qD]) ¢¾i(Zk+1)
:

(169)

V. CONCLUSIONS

In a recent paper [16], Erdinc, Willett, and
Bar-Shalom argued that the performance of the PHD
filter could be improved if it could be generalized
to include second-order information regarding
target number. In this paper we derived closed-form
predictor and corrector equations for the CPHD filter,
which propagates not only the PHD but also the entire
cardinality distribution (probability distribution on
target number). We suggested that estimation of target

number under lower-SNR conditions could be further
improved by extracting MAP estimates rather than
EAP estimates from the cardinality distribution.
Vo, Vo, and Cantoni have devised and successfully

tested Gaussian-mixture implementations of the CPHD
filter [50, 51, 53]. In one simulation, for example,
five targets appear and disappear while observed by a
linear-Gaussian sensor in a dense Poisson false alarm
environment. The CPHD filter correctly detected
all target births and deaths and successfully tracked
the targets during the times they were present in the
scene. Similar results were reported for a similar
simulation involving a nonlinear (range-bearing)
sensor and nonlinear target dynamics. In a third
simulation, Gaussian-mixture implementations of the
PHD and CPHD filters were compared in scenarios
with up to ten targets appearing randomly with
multiple track crossings. Both filters successfully
identified target births and deaths, tracked the targets,
and negotiated track crossings. As expected, for any
individual sample path, the CPHD filter’s estimates of
instantaneous target number were far more accurate
and stable (small variance) than those of the PHD
filter.
Suggested future research: 1) implementation

of the CPHD filter using sequential Monte Carlo
techniques, 2) further testing of the CPHD filter in
more complex scenarios, and 3) since the corrector
step of the CPHD filter will become intractable when
the number of measurements is too large, further
approximations will be necessary. The author has
reported an only partially successful attack on this
problem [25].
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